Electrochemical Behavior and Determination of Rutin at the Copper Nanoparticles-Doped Zeolite A/Graphene Oxide-Modified Electrode


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, a novel Cu‒zeolite A/graphene modified glassy carbon electrode was applied for the determination of rutin. The Cu‒zeolite A/graphene composites were prepared using copper doped zeolite A and graphene oxide as the precursor, subsequently reduced by chemical agents. Based on the Cu‒zeolite A/graphene modified electrode, the overpotential of the rutin oxidation was lowered by ~300 mV. Also the proposed Cu‒zeolite A/graphene modified electrode showed higher electrocatalytic performance than zeolite A/graphene electrode or graphene modified electrode. The electrochemical behavior of copper incorporated in the zeolite A modified electrode illustrated the adsorption-controlled reaction at the modified electrode. The behavior of electrocatalytic oxidation of rutin at the modified electrode was investigated. The diffusion coefficient of rutin was equal to 4.2 × 10–7 cm2/s. A linear calibration graph was obtained for rutin over the concentration range of 2.3 × 10–7–2.5 × 10–3 M. The detection limit for rutin was 1.2 × 10–7 M. The RSDs of 10 replicate measurements performed on a single electrode at rutin concentrations between 2.3 × 10–7–2.5 × 10–3 M were between 1.1 and 2.1%. Study of the influence of potentially interfering substances on the peak current of rutin showed that the method was highly selective. The proposed electrode was used for the determination of rutin in real samples with satisfactory results.

Sobre autores

T. Rohani

Department of Chemistry

Autor responsável pela correspondência
Email: th_rohani@yahoo.com
Irã, Tehran

A. Ghaderi

Department of Chemistry

Email: th_rohani@yahoo.com
Irã, Tehran


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies