Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 28, № 4 (2019)

Article

Metallothermic SHS in Conditions of Artificial Gravity: Mathematical Modeling

Andreev D., Shkadinsky K., Ozerkovskaya N., Krishenik P., Golosova O.

Аннотация

Metallothermic SHS in conditions of artificial gravity was numerically modelled for the 3NiO + 2Al → Al2O3 + 3Ni reaction taken as an example. The process was assumed to include (a) high-temperature combustion reaction yielding liquid products, (b) their gravity-assisted separation, and (c) cooling down. In our ‘throughout’ mathematical model, a three-component emulsion—gas, metal, and ceramics—with individual translational velocities and temperatures was considered. Our model may expectedly extend the range of control means for SHS reactions in extreme conditions.

International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4):217-220
pages 217-220 views

Combustion of Gasless Systems: Thermocapillary Convection of Metal Melt

Lapshin O., Prokof’ev V.

Аннотация

The role of thermocapillary convection in combustion of gasless binary mixtures containing a low-melting reagent was explored by numerical modeling. Variation in relative amounts of reagents and starting sample porosity was found to change a mode of combustion wave propagation over the binary systems under consideration.

International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4):221-225
pages 221-225 views

Solution Combustion Synthesis of ZnO Using Binary Fuel (Glycine + Citric Acid)

Khaliullin S., Zhuravlev V., Ermakova L., Buldakova L., Yanchenko M., Porotnikova N.

Аннотация

Solution combustion synthesis (SCS) of zinc oxide was performed using a binary fuel, glycine and citric acid. It was established that combustion occurs due to oxidation of zinc nitrate–glycine complexes. Citric acid acts as an inhibitor of SCS reaction. An increase in relative content of organic fuel in the solution leads to a reduction in maximal combustion temperature and to formation of elemental carbon (0.2–1.6 wt %) and organic fragments (1.55–3.29 wt %) in SCS-produced zinc oxide. Carbon impurity and organic fragments were removed by annealing at 600°С. The produced wurtzite-type ZnO crystals had a size of 27–37 nm and were assembled into agglomerates. After annealing at 500°С, the specific surface of the powder was 8.44–11.09 m2/g. The photocatalytic activity of ZnO powder was evaluated from the rate of hydroquinone photodecomposition in solution.

International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4):226-232
pages 226-232 views

SHS Reprocessing of Copper Oxide Waste into Copper Powder

Mahmoudi H., Abovyan L., Aydinyan S., Kharatyan S.

Аннотация

Here we report on a single-step, eco-friendly, and facile approach to combustion-assisted reprocessing of oily copper waste into copper powder without preliminary cleaning. Complete reduction of copper from oily copper waste in the combustion wave was reached in the presence of ammonium nitrate and without introducing any reducing agent. The optimal conditions for obtaining >99 % copper powder were reached for green [Cu2O + m(oil)] + xNt mixtures with m = 7–11 wt % and x = 0.35–0.55, were m stands in wt % and x in mole fractions, both in relation to 1 g-mol of Cu2O. In scale-up experiments (up to 10 kg of green mixture), the copper powder with oxygen content below 0.5 wt % and free carbon content below 0.25 wt % was successfully produced. Our approach was also successfully applied to combustion-assisted reduction of copper oxide oily waste mixed with nickel oxide to yield composite powders and Cu–Ni alloys.

International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4):233-238
pages 233-238 views

Thermodynamic Analysis of the CaO–Y2O3–ZrO2–Ti–Fe2O3 System as a Precursor for SHS-Produced Pyrochlore-Based Ceramics

Podbolotov K., Barinova T., Khina B., Velichko M.

Аннотация

The paper reports on the thermodynamic analysis of the CaO–Y2O3–ZrO2–Ti–Fe2O3 system as a precursor for SHS-produced pyrochlore-based ceramics. Adiabatic combustion temperature Tad and equilibrium concentration of pyrochlore were first calculated for the quasi-ternary system Y2O3–ZrO2–(Ti + Fe2O3) containing no CaO. It was found that, in the presence of CaO, a best yield of Zr-enriched pyrochlore ceramic can be reached within the following domain of green compositions (wt %): CaO 2.5–5.0, Y2O3 22.5–35.0, ZrO2 7.5–22.5, and (40% Ti + 60% Fe2O3) 45.0–60.0; within this domain, Tad = 2100–2400°K. Although in control experiments Tad was found to be within the range 1700–1970 K, nevertheless the combustion products always showed the presence of pyrochlore-based ceramic, as predicted by thermodynamic analysis.

International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4):239-244
pages 239-244 views

Electron Beam Assisted Deposition of Ni–Al Coatings onto Steel Substrate

Bakinovskii A., Knyazeva A., Krinitcyn M., Kryukova O., Pobol I., Fedorov V., Rajczyk J.

Аннотация

We suggest a mathematical model for electron-beam assisted deposition of protective coatings that involves the equations of heat conduction, chemical kinetics, and porosity evolution. The model was numerically applied to the reactive Ni–Al system and theoretical predictions were critically analyzed by comparison with experiment.

International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4):245-255
pages 245-255 views

Porous Ni–Al–CGO Cermet for Use in Solid Oxide Fuel Cells

Solovyev A., Maznoy A., Kuterbekov K., Nurkenov S., Opakhai S., Kirdyashkin A., Kitler V., Pichugin N., Rabotkin S., Ionov I.

Аннотация

Porous Ni–Al–CGO cermet (CGO = Сe0.9Gd0.1O2) for use in solid oxide fuel cells was fabricated by thermal explosion (volume reaction) in Ni–Al–CGO powder compacts in different heat sink conditions. Temperature profiles of thermal explosion were recorded and analyzed as a function of green composition. Phase composition of resultant porous materials was found to depend on the CGO content of green mixture and temperature of vacuum annealing. Starting and final materials were characterized by XRD, SEM, and EDS. Synthesized uniform cermets with a porosity of 50–60% can be recommended for use as a support for solid oxide fuel cells with Ni/CGO anode.

International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4):256-261
pages 256-261 views

SHS of Ti3SiC2-Based Materials in the Ti–Si–C System: Impact of Silicon Excess

Lis J., Chlubny L., Witulska K., Borowiak P., Kozak K., Misztal A., Czajkowska O.

Аннотация

For SHS of Ti3SiC2-based materials in the Ti–Si–C system, we explored the impact of silicon excess on the composition of resultant MAX-phase material by XRD and SEM methods. After hot pressing, SHS-produced MAX-phase material was found to contain over 88 wt % of Ti3SiC2. The SHS-produced powders are sinterable and deserve further studies on their hot pressing and pressure-less reactive sintering.

International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4):262-265
pages 262-265 views

Single-Step Solution-Combustion Synthesis of Magnetically Soft NiFe2O4 Nanopowders with Controllable Parameters

Martinson K., Cherepkova I., Panteleev I., Popkov V.

Аннотация

One-step solution-combustion synthesis with glycine as a fuel was used to obtain ferromagnetic nickel ferrite (NiFe2O4) spinel. According to EDX data, the elemental composition of all synthesized samples corresponded to NiFe2O4, while the XRD results showed the formation of phase-pure nickel ferrite spinel. NiFe2O4 nanopowders had a branched porous microstructure as established by SEM analysis. Variation in the Red/Ox ratio (glycine to nitrate ratio G/N = 0.4, 0.6, 0.8, 1.0, 1.2) was found to affect the average size of nickel ferrite crystallites (D) within the range 23–37 nm. The results of vibration magnetometry showed the ferromagnetic ordering in magnetic moments of NiFe2O4 nanopowders. The magnetic parameters of synthesized nickel ferrite—saturation magnetization Ms = 31–59 emu/g, remanent magnetization Mr = 3–13 emu/g, and coercive force Hc = 10–95 Oe—were found to depend on crystallite size D. The fact that the values of Ms, Mr, and Hc grow with increasing D opens up a way to synthesis of NiFe2O4 nanopowders with controllable magnetic parameters by simply varying the G/N ratio of starting solution.

International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4):266-270
pages 266-270 views

Brief Communications

Effect of Aluminum Doping on Structural and Mechanical Properties of Ni–Mg Ferrites

Gandhad S., Patil P., Mathad S., Hublikar L., Jeergal P., Pujar R.
International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4):271-273
pages 271-273 views

Mo-Based Composites Reinforced with Nb, Si, and B by Metallothermic SHS under Artificial Gravity

Vdovin Y., Andreev D., Yukhvid V.
International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4):274-275
pages 274-275 views

Combustion of Granulated Ni–Al Mixtures: Influence of Mechanoactivation Time

Kochetov N., Seplyarskii B.
International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4):276-278
pages 276-278 views

Heusler Phases Ni2AlM (M = Ti, Zr, Hf, Nb) by SHS Method

Sidnov K., Belov D.
International Journal of Self-Propagating High-Temperature Synthesis. 2019;28(4):279-280
pages 279-280 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».