Use of Adaptive Methods to Solve the Inverse Problem of Determination of Composition of Multi-Component Solutions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This study considers solving the inverse problem of determination of salt or ionic composition of multi-component solutions of inorganic salts by their Raman spectra using artificial neural networks. From the point of view of data analysis, one of the key problems here is high input dimensionality of the data, as the spectrum is usually recorded in 1–2 thousand channels. The two main approaches used for dimensionality reduction are feature selection and feature extraction. In this paper, three feature extraction methods are compared: channel aggregation, principal component analysis, and discrete wavelet transformation. It is demonstrated that for neural network solution of the inverse problem of determination of salt composition, the best results are provided by channel aggregation.

作者简介

A. Efitorov

Skobeltsyn Institute of Nuclear Physics

Email: dolenko@srd.sinp.msu.ru
俄罗斯联邦, Moscow, 119991

S. Dolenko

Skobeltsyn Institute of Nuclear Physics

编辑信件的主要联系方式.
Email: dolenko@srd.sinp.msu.ru
俄罗斯联邦, Moscow, 119991

T. Dolenko

Skobeltsyn Institute of Nuclear Physics; Phaculty of Physics

Email: dolenko@srd.sinp.msu.ru
俄罗斯联邦, Moscow, 119991; Moscow, 119991

K. Laptinskiy

Skobeltsyn Institute of Nuclear Physics; Phaculty of Physics

Email: dolenko@srd.sinp.msu.ru
俄罗斯联邦, Moscow, 119991; Moscow, 119991

S. Burikov

Skobeltsyn Institute of Nuclear Physics; Phaculty of Physics

Email: dolenko@srd.sinp.msu.ru
俄罗斯联邦, Moscow, 119991; Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018