Use of Adaptive Methods to Solve the Inverse Problem of Determination of Composition of Multi-Component Solutions


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This study considers solving the inverse problem of determination of salt or ionic composition of multi-component solutions of inorganic salts by their Raman spectra using artificial neural networks. From the point of view of data analysis, one of the key problems here is high input dimensionality of the data, as the spectrum is usually recorded in 1–2 thousand channels. The two main approaches used for dimensionality reduction are feature selection and feature extraction. In this paper, three feature extraction methods are compared: channel aggregation, principal component analysis, and discrete wavelet transformation. It is demonstrated that for neural network solution of the inverse problem of determination of salt composition, the best results are provided by channel aggregation.

Авторлар туралы

A. Efitorov

Skobeltsyn Institute of Nuclear Physics

Email: dolenko@srd.sinp.msu.ru
Ресей, Moscow, 119991

S. Dolenko

Skobeltsyn Institute of Nuclear Physics

Хат алмасуға жауапты Автор.
Email: dolenko@srd.sinp.msu.ru
Ресей, Moscow, 119991

T. Dolenko

Skobeltsyn Institute of Nuclear Physics; Phaculty of Physics

Email: dolenko@srd.sinp.msu.ru
Ресей, Moscow, 119991; Moscow, 119991

K. Laptinskiy

Skobeltsyn Institute of Nuclear Physics; Phaculty of Physics

Email: dolenko@srd.sinp.msu.ru
Ресей, Moscow, 119991; Moscow, 119991

S. Burikov

Skobeltsyn Institute of Nuclear Physics; Phaculty of Physics

Email: dolenko@srd.sinp.msu.ru
Ресей, Moscow, 119991; Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2018