A hybrid language model based on a recurrent neural network and probabilistic topic modeling


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A language model based on features extracted from a recurrent neural network language model and semantic embedding of the left context of the current word based on probabilistic semantic analysis (PLSA) is developed. To calculate such embedding, the context is considered as a document. The effect of vanishing gradients in a recurrent neural network is reduced by this method. The experiment has shown that adding topic-based features reduces perplexity by 10%.

作者简介

M. Kudinov

Federal Research Center Computer Science and Control

编辑信件的主要联系方式.
Email: mikhailkudinov@gmail.com
俄罗斯联邦, ul. Vavilova 40, Moscow, 119333

A. Romanenko

Moscow Institute of Physics and Technology (State University)

Email: mikhailkudinov@gmail.com
俄罗斯联邦, Institutskii pr. 9, Dolgoprudnyi, 141700

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016