A hybrid language model based on a recurrent neural network and probabilistic topic modeling


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A language model based on features extracted from a recurrent neural network language model and semantic embedding of the left context of the current word based on probabilistic semantic analysis (PLSA) is developed. To calculate such embedding, the context is considered as a document. The effect of vanishing gradients in a recurrent neural network is reduced by this method. The experiment has shown that adding topic-based features reduces perplexity by 10%.

Sobre autores

M. Kudinov

Federal Research Center Computer Science and Control

Autor responsável pela correspondência
Email: mikhailkudinov@gmail.com
Rússia, ul. Vavilova 40, Moscow, 119333

A. Romanenko

Moscow Institute of Physics and Technology (State University)

Email: mikhailkudinov@gmail.com
Rússia, Institutskii pr. 9, Dolgoprudnyi, 141700

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016