A hybrid language model based on a recurrent neural network and probabilistic topic modeling


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A language model based on features extracted from a recurrent neural network language model and semantic embedding of the left context of the current word based on probabilistic semantic analysis (PLSA) is developed. To calculate such embedding, the context is considered as a document. The effect of vanishing gradients in a recurrent neural network is reduced by this method. The experiment has shown that adding topic-based features reduces perplexity by 10%.

Авторлар туралы

M. Kudinov

Federal Research Center Computer Science and Control

Хат алмасуға жауапты Автор.
Email: mikhailkudinov@gmail.com
Ресей, ul. Vavilova 40, Moscow, 119333

A. Romanenko

Moscow Institute of Physics and Technology (State University)

Email: mikhailkudinov@gmail.com
Ресей, Institutskii pr. 9, Dolgoprudnyi, 141700

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016