A hybrid language model based on a recurrent neural network and probabilistic topic modeling
- Авторлар: Kudinov M.S.1, Romanenko A.A.2
-
Мекемелер:
- Federal Research Center Computer Science and Control
- Moscow Institute of Physics and Technology (State University)
- Шығарылым: Том 26, № 3 (2016)
- Беттер: 587-592
- Бөлім: Applied Problems
- URL: https://journals.rcsi.science/1054-6618/article/view/194842
- DOI: https://doi.org/10.1134/S1054661816030123
- ID: 194842
Дәйексөз келтіру
Аннотация
A language model based on features extracted from a recurrent neural network language model and semantic embedding of the left context of the current word based on probabilistic semantic analysis (PLSA) is developed. To calculate such embedding, the context is considered as a document. The effect of vanishing gradients in a recurrent neural network is reduced by this method. The experiment has shown that adding topic-based features reduces perplexity by 10%.
Негізгі сөздер
Авторлар туралы
M. Kudinov
Federal Research Center Computer Science and Control
Хат алмасуға жауапты Автор.
Email: mikhailkudinov@gmail.com
Ресей, ul. Vavilova 40, Moscow, 119333
A. Romanenko
Moscow Institute of Physics and Technology (State University)
Email: mikhailkudinov@gmail.com
Ресей, Institutskii pr. 9, Dolgoprudnyi, 141700
Қосымша файлдар
