Combining rules using local statistics and uncertainty estimates for improved ensemble segmentation


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Segmentation using an ensemble of classifiers (or committee machine) combines multiple classifiers’ results to increase the performance when compared to single classifiers. In this paper, we propose new concepts for combining rules. They are based (1) on uncertainties of the individual classifiers, (2) on combining the result of existing combining rules, (3) on combining local class probabilities with the existing segmentation probabilities at each individual segmentation, and (4) on using uncertainty-based weights for the weighted majority rule. The results show that the proposed local-statistics-aware combining rules can reduce the effect of noise in the individual segmentation result and consequently improve the performance of the final (combined) segmentation. Also, combining existing combining rules and using the proposed uncertainty- based weights can further improve the performance.

Sobre autores

A. Al-Taie

Jacobs University

Autor responsável pela correspondência
Email: a.altaie@csw.uobaghdad.edu.iq
Alemanha, Bremen

H. Hahn

Jacobs University; Fraunhofer MEVIS

Email: a.altaie@csw.uobaghdad.edu.iq
Alemanha, Bremen; Bremen

L. Linsen

Fraunhofer MEVIS; Westfälischen Wilhelms-Universität

Email: a.altaie@csw.uobaghdad.edu.iq
Alemanha, Bremen; Münster

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017