Combining rules using local statistics and uncertainty estimates for improved ensemble segmentation
- 作者: Al-Taie A.1, Hahn H.K.1,2, Linsen L.2,3
-
隶属关系:
- Jacobs University
- Fraunhofer MEVIS
- Westfälischen Wilhelms-Universität
- 期: 卷 27, 编号 3 (2017)
- 页面: 444-457
- 栏目: Representation, Processing, Analysis, and Understanding of Images
- URL: https://journals.rcsi.science/1054-6618/article/view/195120
- DOI: https://doi.org/10.1134/S105466181703004X
- ID: 195120
如何引用文章
详细
Segmentation using an ensemble of classifiers (or committee machine) combines multiple classifiers’ results to increase the performance when compared to single classifiers. In this paper, we propose new concepts for combining rules. They are based (1) on uncertainties of the individual classifiers, (2) on combining the result of existing combining rules, (3) on combining local class probabilities with the existing segmentation probabilities at each individual segmentation, and (4) on using uncertainty-based weights for the weighted majority rule. The results show that the proposed local-statistics-aware combining rules can reduce the effect of noise in the individual segmentation result and consequently improve the performance of the final (combined) segmentation. Also, combining existing combining rules and using the proposed uncertainty- based weights can further improve the performance.
作者简介
A. Al-Taie
Jacobs University
编辑信件的主要联系方式.
Email: a.altaie@csw.uobaghdad.edu.iq
德国, Bremen
H. Hahn
Jacobs University; Fraunhofer MEVIS
Email: a.altaie@csw.uobaghdad.edu.iq
德国, Bremen; Bremen
L. Linsen
Fraunhofer MEVIS; Westfälischen Wilhelms-Universität
Email: a.altaie@csw.uobaghdad.edu.iq
德国, Bremen; Münster
补充文件
