Combining rules using local statistics and uncertainty estimates for improved ensemble segmentation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Segmentation using an ensemble of classifiers (or committee machine) combines multiple classifiers’ results to increase the performance when compared to single classifiers. In this paper, we propose new concepts for combining rules. They are based (1) on uncertainties of the individual classifiers, (2) on combining the result of existing combining rules, (3) on combining local class probabilities with the existing segmentation probabilities at each individual segmentation, and (4) on using uncertainty-based weights for the weighted majority rule. The results show that the proposed local-statistics-aware combining rules can reduce the effect of noise in the individual segmentation result and consequently improve the performance of the final (combined) segmentation. Also, combining existing combining rules and using the proposed uncertainty- based weights can further improve the performance.

作者简介

A. Al-Taie

Jacobs University

编辑信件的主要联系方式.
Email: a.altaie@csw.uobaghdad.edu.iq
德国, Bremen

H. Hahn

Jacobs University; Fraunhofer MEVIS

Email: a.altaie@csw.uobaghdad.edu.iq
德国, Bremen; Bremen

L. Linsen

Fraunhofer MEVIS; Westfälischen Wilhelms-Universität

Email: a.altaie@csw.uobaghdad.edu.iq
德国, Bremen; Münster

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017