Extracting hyponymy of domain entity using Cascaded Conditional Random Fields


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Entity hyponymy is an important semantic relation to build the domain ontology or knowledge graphs. Traditional extraction methods of domain concepts hyponymy are limited to manual annotation or specific patterns. Aiming at this problem, this paper proposed a new method of extracting hypernym–hyponym relations of domain entity with the CCRFs (Cascaded Conditional Random Fields), i.e., a two-layer CRFs model is employed to learn the hyponymy of domain entity concept. The lower-level of the CCRFs model is used to model the words by considering the dependence of long distance among words and identify the domain entity concept, which need to be combined in order. The pairs of entity concept can be obtained on the basis of the definition template characteristics. Then label the semantic pairs of concepts in high-level model by integrating assemblage characteristics and hyponymy demonstratives in feature template, finally identify the hypernym–hyponym relations between domain entities. Experiments on real-world data sets demonstrate the performance of the proposed algorithms.

Sobre autores

Xiaojun Ma

School of Information Engineering and Automation

Email: gjade86@hotmail.com
República Popular da China, Kunming, 650500

Jianyi Guo

School of Information Engineering and Automation; Key Lab of Intelligent Information Processing

Autor responsável pela correspondência
Email: gjade86@hotmail.com
República Popular da China, Kunming, 650500; Kunming, 650500

Zhengtao Yu

School of Information Engineering and Automation; Key Lab of Intelligent Information Processing

Email: gjade86@hotmail.com
República Popular da China, Kunming, 650500; Kunming, 650500

Cunli Mao

School of Information Engineering and Automation; Key Lab of Intelligent Information Processing

Email: gjade86@hotmail.com
República Popular da China, Kunming, 650500; Kunming, 650500

Yantuan Xian

School of Information Engineering and Automation; Key Lab of Intelligent Information Processing

Email: gjade86@hotmail.com
República Popular da China, Kunming, 650500; Kunming, 650500

Wei Chen

School of Information Engineering and Automation; Key Lab of Intelligent Information Processing

Email: gjade86@hotmail.com
República Popular da China, Kunming, 650500; Kunming, 650500

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017