Extracting hyponymy of domain entity using Cascaded Conditional Random Fields


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Entity hyponymy is an important semantic relation to build the domain ontology or knowledge graphs. Traditional extraction methods of domain concepts hyponymy are limited to manual annotation or specific patterns. Aiming at this problem, this paper proposed a new method of extracting hypernym–hyponym relations of domain entity with the CCRFs (Cascaded Conditional Random Fields), i.e., a two-layer CRFs model is employed to learn the hyponymy of domain entity concept. The lower-level of the CCRFs model is used to model the words by considering the dependence of long distance among words and identify the domain entity concept, which need to be combined in order. The pairs of entity concept can be obtained on the basis of the definition template characteristics. Then label the semantic pairs of concepts in high-level model by integrating assemblage characteristics and hyponymy demonstratives in feature template, finally identify the hypernym–hyponym relations between domain entities. Experiments on real-world data sets demonstrate the performance of the proposed algorithms.

Ключевые слова

Об авторах

Xiaojun Ma

School of Information Engineering and Automation

Email: gjade86@hotmail.com
Китай, Kunming, 650500

Jianyi Guo

School of Information Engineering and Automation; Key Lab of Intelligent Information Processing

Автор, ответственный за переписку.
Email: gjade86@hotmail.com
Китай, Kunming, 650500; Kunming, 650500

Zhengtao Yu

School of Information Engineering and Automation; Key Lab of Intelligent Information Processing

Email: gjade86@hotmail.com
Китай, Kunming, 650500; Kunming, 650500

Cunli Mao

School of Information Engineering and Automation; Key Lab of Intelligent Information Processing

Email: gjade86@hotmail.com
Китай, Kunming, 650500; Kunming, 650500

Yantuan Xian

School of Information Engineering and Automation; Key Lab of Intelligent Information Processing

Email: gjade86@hotmail.com
Китай, Kunming, 650500; Kunming, 650500

Wei Chen

School of Information Engineering and Automation; Key Lab of Intelligent Information Processing

Email: gjade86@hotmail.com
Китай, Kunming, 650500; Kunming, 650500

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».