Linear classifiers and selection of informative features
- Авторы: Zhuravlev Y.I.1, Laptin Y.P.2, Vinogradov A.P.1, Zhurbenko N.G.2, Lykhovyd O.P.2, Berezovskyi O.A.2
-
Учреждения:
- Dorodnicyn Computing Centre of the Russian Academy of Sciences
- Glushkov Institute of Cybernetics of the Ukrainian National Academy of Sciences
- Выпуск: Том 27, № 3 (2017)
- Страницы: 426-432
- Раздел: Mathematical Method in Pattern Recognition
- URL: https://journals.rcsi.science/1054-6618/article/view/195111
- DOI: https://doi.org/10.1134/S1054661817030336
- ID: 195111
Цитировать
Аннотация
In this work, to construct classifiers for two linearly inseparable sets, the problem of minimizing the margin of incorrect classification is formulated, approaches to achieving approximate solution, and calculation estimates of the optimal value for this problem, are considered. Results of computational experiments that compare proposed approaches with SVM are presented. The problem of identifying informative features for large-dimensional diagnostic applications is analyzed and algorithms for its solution are developed.
Об авторах
Yu. Zhuravlev
Dorodnicyn Computing Centre of the Russian Academy of Sciences
Email: vngrccas@mail.ru
Россия, Moscow, 119333
Yu. Laptin
Glushkov Institute of Cybernetics of the Ukrainian National Academy of Sciences
Email: vngrccas@mail.ru
Украина, Kiev, 03680
A. Vinogradov
Dorodnicyn Computing Centre of the Russian Academy of Sciences
Автор, ответственный за переписку.
Email: vngrccas@mail.ru
Россия, Moscow, 119333
N. Zhurbenko
Glushkov Institute of Cybernetics of the Ukrainian National Academy of Sciences
Email: vngrccas@mail.ru
Украина, Kiev, 03680
O. Lykhovyd
Glushkov Institute of Cybernetics of the Ukrainian National Academy of Sciences
Email: vngrccas@mail.ru
Украина, Kiev, 03680
O. Berezovskyi
Glushkov Institute of Cybernetics of the Ukrainian National Academy of Sciences
Email: vngrccas@mail.ru
Украина, Kiev, 03680
Дополнительные файлы
