Linear classifiers and selection of informative features


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, to construct classifiers for two linearly inseparable sets, the problem of minimizing the margin of incorrect classification is formulated, approaches to achieving approximate solution, and calculation estimates of the optimal value for this problem, are considered. Results of computational experiments that compare proposed approaches with SVM are presented. The problem of identifying informative features for large-dimensional diagnostic applications is analyzed and algorithms for its solution are developed.

Sobre autores

Yu. Zhuravlev

Dorodnicyn Computing Centre of the Russian Academy of Sciences

Email: vngrccas@mail.ru
Rússia, Moscow, 119333

Yu. Laptin

Glushkov Institute of Cybernetics of the Ukrainian National Academy of Sciences

Email: vngrccas@mail.ru
Ucrânia, Kiev, 03680

A. Vinogradov

Dorodnicyn Computing Centre of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: vngrccas@mail.ru
Rússia, Moscow, 119333

N. Zhurbenko

Glushkov Institute of Cybernetics of the Ukrainian National Academy of Sciences

Email: vngrccas@mail.ru
Ucrânia, Kiev, 03680

O. Lykhovyd

Glushkov Institute of Cybernetics of the Ukrainian National Academy of Sciences

Email: vngrccas@mail.ru
Ucrânia, Kiev, 03680

O. Berezovskyi

Glushkov Institute of Cybernetics of the Ukrainian National Academy of Sciences

Email: vngrccas@mail.ru
Ucrânia, Kiev, 03680

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017