Efficiency analysis of information theoretic measures in image registration


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Efficiency analysis of some information theoretic measures that can be used in image registration as objective functions is carried out. Shannon mutual information, Renyi and Tsallis entropy are examined using synthesized images with correlation function, intensity and noise distributions close to Gaussian. Results show that Renyi entropy potentially provides a faster convergence rate and lower variance of parameters’ estimates when using recurrent image registration algorithms. According to these criteria, Tsallis entropy provides a little worse results; however, it has a larger effective range. Shannon mutual information loses to both entropy measures. Moreover, it is more sensitive to noise. Nevertheless, Shannon mutual information is more effective in terms of computational complexity.

Авторлар туралы

S. Voronov

Ulyanovsk State Technical University

Хат алмасуға жауапты Автор.
Email: s.voronov@ulstu.ru
Ресей, ul. Severnyi Venets 32, Ulyanovsk, 432027

A. Tashlinskii

Ulyanovsk State Technical University

Email: s.voronov@ulstu.ru
Ресей, ul. Severnyi Venets 32, Ulyanovsk, 432027

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016