Efficiency analysis of information theoretic measures in image registration


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Efficiency analysis of some information theoretic measures that can be used in image registration as objective functions is carried out. Shannon mutual information, Renyi and Tsallis entropy are examined using synthesized images with correlation function, intensity and noise distributions close to Gaussian. Results show that Renyi entropy potentially provides a faster convergence rate and lower variance of parameters’ estimates when using recurrent image registration algorithms. According to these criteria, Tsallis entropy provides a little worse results; however, it has a larger effective range. Shannon mutual information loses to both entropy measures. Moreover, it is more sensitive to noise. Nevertheless, Shannon mutual information is more effective in terms of computational complexity.

Sobre autores

S. Voronov

Ulyanovsk State Technical University

Autor responsável pela correspondência
Email: s.voronov@ulstu.ru
Rússia, ul. Severnyi Venets 32, Ulyanovsk, 432027

A. Tashlinskii

Ulyanovsk State Technical University

Email: s.voronov@ulstu.ru
Rússia, ul. Severnyi Venets 32, Ulyanovsk, 432027

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016