Modeling of thermomechanical fracture of functionally graded materials with respect to multiple crack interaction


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Different aspects of thermomechanical fracture of functionally graded materials (FGMs) are considered. Among them are the crack interaction problems in a functionally graded coating on a homogeneous substrate (FGM/H). The interaction between systems of edge cracks is investigated, as well as, how this mutual interaction influences the fracture process and the formation of crack patterns. The problem is formulated with respect to singular integral equations which are referred to the boundary equation methods. The FGM properties are modeled by exponential functions. The main fracture characteristics are calculated, namely, the stress intensity factors, the angles of deviation of the cracks from their initial propagation direction and the critical stresses when the crack starts to propagate. The last two characteristics are calculated using an appropriate fracture criterion. The problem contains different parameters, such as the geometry (location and orientation of cracks, their lengths, and the width of the FGM layer) and material parameters, i.e. the inhomogeneity parameters of elastic and thermal coefficients of the functionally graded material. The influence of these parameters on the thermo-mechanical fracture of FGM/H is investigated. As examples the following real material combinations are discussed: TiC/SiC, Al2O3/MoSi2, MoSi2/SiC, ZrO2/nickel and ZrO2/steel.

Sobre autores

V. Petrova

IMWF; Voronezh State University

Autor responsável pela correspondência
Email: veraep@gmail.com
Alemanha, Stuttgart, D-70569; Voronezh, 394006

S. Schmauder

IMWF

Email: veraep@gmail.com
Alemanha, Stuttgart, D-70569


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies