Crystal plasticity study on stress and strain partitioning in a measured 3D dual phase steel microstructure


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Dual phase steels are advanced high strength alloys typically used for structural parts and reinforcements in car bodies. Their good combination of strength and ductility and their lean composition render them an economically competitive option for realizing multiple lightweight design options in automotive engineering. The mechanical response of dual phase steels is the result of the strain and stress partitioning among the ferritic and martensitic phases and the individual crystallographic grains and subgrains of these phases. Therefore, understanding how these microstructural features influence the global and local mechanical properties is of utmost importance for the design of improved dual phase steel grades. While multiple corresponding simulation studies have been dedicated to the investigation of dual phase steel micromechanics, numerical tools and experiment techniques for characterizing and simulating real 3D microstructures of such complex materials have been emerged only recently. Here we present a crystal plasticity simulation study based on a 3D dual phase microstructure which is obtained by EBSD tomography, also referred to as 3D EBSD (EBSD—electron backscatter diffraction). In the present case we utilized a 3D EBSD serial sectioning approach based on mechanical polishing. Moreover, sections of the 3D microstructure are used as 2D models to study the effect of this simplification on the stress and strain distribution. The simulations are conducted using a phenomenological crystal plasticity model and a spectral method approach implemented in the Düsseldorf Advanced Material Simulation Kit (DAMASK).

作者简介

M. Diehl

Max-Planck-Institut für Eisenforschung GmbH

编辑信件的主要联系方式.
Email: m.diehl@mpie.de
德国, Düsseldorf, 40237

D. An

Max-Planck-Institut für Eisenforschung GmbH

Email: m.diehl@mpie.de
德国, Düsseldorf, 40237

P. Shanthraj

Max-Planck-Institut für Eisenforschung GmbH

Email: m.diehl@mpie.de
德国, Düsseldorf, 40237

S. Zaefferer

Max-Planck-Institut für Eisenforschung GmbH

Email: m.diehl@mpie.de
德国, Düsseldorf, 40237

F. Roters

Max-Planck-Institut für Eisenforschung GmbH

Email: m.diehl@mpie.de
德国, Düsseldorf, 40237

D. Raabe

Max-Planck-Institut für Eisenforschung GmbH

Email: m.diehl@mpie.de
德国, Düsseldorf, 40237

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017