Localized heat perturbation in harmonic 1D crystals: Solutions for the equation of anomalous heat conduction


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper exact analytical solutions for the equation that describes anomalous heat propagation in a harmonic 1D lattices are obtained. Rectangular, triangular and sawtooth initial perturbations of the temperature field are considered. The solution for an initially rectangular temperature profile is investigated in detail. It is shown that the decay of the solution near the wavefront is proportional to \(1/\sqrt t \). In the center of the perturbation zone the decay is proportional to 1/t. Thus, the solution decays slower near the wavefront, leaving clearly visible peaks that can be detected experimentally.

Авторлар туралы

A. Sokolov

Peter the Great Saint-Petersburg Polytechnic University

Хат алмасуға жауапты Автор.
Email: sokolovalexey1@gmail.com
Ресей, St.-Petersburg, 195251

A. Krivtsov

Peter the Great Saint-Petersburg Polytechnic University; Institute of Problems of Mechanical Engineering

Email: sokolovalexey1@gmail.com
Ресей, St.-Petersburg, 195251; St.-Petersburg, 199178

W. Müller

Institute of Mechanics, Chair of Continuum Mechanics and Constitutive Theory

Email: sokolovalexey1@gmail.com
Германия, Berlin, 10587

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017