STEREOTACTIC RADIOTHERAPY FOR THE TREATMENT OF CLINICAL STAGE I-IIA LUNG CANCER PATIENTS. THE EXPERIENCE OF N.N. BLOKHIN NATIONAL MEDICAL RESEARCH CENTER OF ONCOLOGY

详细

Introduction: Nowadays the stereotactic radiotherapy (SRT) of clinical stage I-II lung cancer patients is the choice of the treatment modality for functionally inoperable patients. It shows safety and high efficiency in achieving local control. Though there is a range of unsolved issues connected with the prediction of the treatment efficiency and frequency of complications, an integration of new technologies in the planning and treatment process allows widening the search of the predictive factors. Material and methods. Since 2014, 39 patients (17 T1N0M0 patients, 22 T2N0M0 patients) with clinical stage I-IIa lung cancer have undergone SRT. The majority of patients (35) have been recognized as functionally inoperable due to the concurrent broncho-pulmonary pathology, 4 conditionally operable patients have refused an operation. 11 patients had the primary multiple tumors in their anamneses. 36 patients had a peripheral tumor. The options for the fractionation were: 10 Gy × 5 fractions (n = 26) and 7 Gy × 8 fractions (n = 13) - BED = 100 Gy. Results. The median follow-up was 26 months (range: 3-38 months). The 2-year local control was 94%. The isolated local recurrences were not registered. Overall and 2-year recurrence-free survival rate was 84% (95% CI, 70-99) and 83.2% (95% CI: 70.5-99) respectively. During the first year, 4 patients (10%) had the locoregional and distant progression and 3 of them died. 7 patients had experienced pulmonary toxicity of grade 2 or more. One patient with central tumor died from pulmonary hemorrhage (toxicity of grade 5). Grade 3 chest pain was observed in 2 patients, one of them had a rib fracture. One-factor analysis, revealed a reliable influence of the fractionation regimen (р = 0.04) and, close to reliability, the initial SUVmax level (р = 0.07) on the prognosis. A reliable relationship between the radiation toxicity level and dosimetric radiation index (V10, V5, MLD) was not registered. There was a tendency to reliable correlation with the total lung capacity indices (р = 0.058). Conclusions. A search for additional treatment efficiency and toxicity predictors of SRT treatment should include modern approaches to planning and delivery. The total dose delivery regimen and initial tumor SUVmax can be predictive efficiency factors, while the pulmonary tissue volume can be a predictive toxicity factor.

作者简介

Tatiana Borisova

N.N. Blokhin National Medical Research Center of Oncology

Email: tborisova111@gmail.com
MD, Ph.D., Senior Researcher of the N.N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russian Federation Moscow, 115478, Russian Federation

A. Nazarenko

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

A. Allakhverdiev

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

S. Tkachev

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

S. Alieva

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

O. Trofimova

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

V. Glebovskaya

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

K. Laktionov

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

V. Breder

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

N. Meshcheryakova

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

D. Marinov

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

A. Fedorova

N.N. Blokhin National Medical Research Center of Oncology

Moscow, 115478, Russian Federation

参考

  1. Torre L.A., Bray F., Siegel R.L. Ferlay J., Lortet-Tieulent J., Jemal A. et al. Global cancer statistics, 2012. CA: Cancer J. Clin. 2015; 65(2): 87-108. doi: 10.3322/caac.21262
  2. Aksel E.M., Davydov M.I. (eds.) Statistics of malignant neoplasms in Russia and CIS countries in 2012. Moscow: Izdatel’skaya gruppa RONC; 2014. (in Russian)/ Аксель Е.М., Давыдов М.И. (ред.) Статистика злокачественных новообразований в России и странах СНГ в 2012 г. М.: Издательская группа РОНЦ; 2014.
  3. Pezzi C.M., Mallin K., Mendez A.S., Gau E.G., Putnam J.B. Ninetyday mortality after resection for lung cancer is nearly double 30-day mortality. J. Thorac. Cardiovasc. Surg. 2014; 148(5): 2269-78. doi: 10.1016/j.jtcvs.2014.07.077
  4. Nanda R.H., Liu Y., Gillespie T.W., Mikell J.L., Ramalingam S.S., Fernandez F.G. et al. Stereotactic body radiation therapy versus no treatment for early stage non-small cell lung cancer in medically inoperable elderly patients: A National Cancer Data Base analysis. Cancer. 2015; 121(23): 4222-30. doi: 10.1002/cncr.29640
  5. Dalwadi S.M., Szeja S., Teh B.S., Balter E.B., Farach A.M. Outcomes in elderly stage I non-small cell lung cancer in the stereotactic body radiation therapy era: a surveillance, epidemiology, and end results analysis. Int. J. Rad. Oncol. 2016, 96(2Suppl.): S68.
  6. Haasbeek C.J., Lagerwaard F.J., Antonisse M.E., Slotman B.J., Senan S. Stage I nonsmall cell lung cancer in patients aged ≥75 years: outcomes after stereotactic radiotherapy. Cancer. 2010; 116(2): 406-14. doi: 10.1002/cncr.24759
  7. Van den Berg L.L., Klinkenberg T.J., Groen H.J., Widder J. Patterns of Recurrence and Survival after Surgery or Stereotactic Radiotherapy for Early Stage NSCLC. J. Thorac. Oncol. 2015; 10(5): 826-31. doi: 10.1097/JTO.0000000000000483
  8. Chang J.Y., Senan S., Paul M.A., Mehran R.J., Louie A.V., Balter P. et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol. 2015; 16(6): 630-7. doi: 10.1016/S1470-2045(15)70168-3
  9. Rami-Porta R., Ball D., Crowley J., Giroux D.L., Jett J., Travis W.D. et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the T descriptors in the forthcoming (seventh) edition of the TNM classification for lung cancer. J. Thorac. Oncol. 2007; 2(7): 593-602. doi: 10.1097/JTO.0b013e31807a2f81
  10. Davydov M.I., Polotsky B.E. Modern principles of choice of medical tactics, and the possibility of surgical treatment of non-small cell lung cancer. In: New in lung cancer therapy. Мoscow; 2003: 41-53. (in Russian)/ Давыдов М.И., Полоцкий Б.Е. Современные принципы выбора лечебной тактики, и возможность хирургического лечения немелкоклеточного рака лёгкого. В кн.: Новое в терапии рака лёгкого. М; 2003: 41-53.
  11. Li L., Ren S., Zhang Y., Guan Y., Zhao J., Liu J. et al. Risk factors for predicting the occult nodal metastasis in T1-2N0M0 NSCLC patients staged by PET/CT: potential value in the clinic. Lung Cancer. 2013; 81(2): 213-7. doi: 10.1016/j.lungcan.2013.04.012
  12. Onishi H., Araki T., Shirato H., Nagata Y., Hiraoka M., Goti K. et al. Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer. 2004; 101(7): 1623-31. doi: 10.1002/cncr.20539
  13. Shuryak I., Carlson D.J., Brown J.M., Brenner D.J. High-dose and fractionation effect in stereotactic radiation therapy: analysis of tumor control data from 2965 patients. Radiother. Oncol. 2015; 115(3): 327-34. doi: 10.1016/j.radonc.2015.05.013
  14. Katoh N., Soda I., Tamamura H., Takahashi S., Uchinami Y., Ishiyama H. et al. Clinical outcomes of stage I and IIA non-small cell lung cancer patients treated with stereotactic body radiotherapy using a real-time tumor-tracking radiotherapy system. Radiat. Oncol. 2017; 12(1): 3-12. doi: 10.1186/s13014-016-0742-3
  15. Stanic S., Paulus R., Timmerman R.D., Michalski J.M., Barriger R.B., Bezjak A. et al. No clinically significant changes in pulmonary function following stereotactic body radiation therapy for early-stage peripheral non-small cell lung cancer: an analysis of RTOG 0236. Int. J. Radiat. Oncol. Biol. Phys. 2014; 88(5): 1092-9. doi: 10.1016/j.ijrobp.2013.12.050
  16. Ferrero C., Badellino S., Filippi A.R., Focaraccio L., Levra M.G., Levis M. et al. Pulmonary function and quality of life after VMAT-based stereotactic ablative radiotherapy for early stage inoperable NSCLC: a prospective study. Lung Cancer. 2015; 89(3): 350-6. doi: 10.1016/j.lungcan.2015.06.019
  17. Timmerman R., McGarry R., Yiannoutsos C., Papiez L., Tudor K., DeLuca J. et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J. Clin. Oncol. 2006; 24: 4833-9. doi: 10.1200/JCO.2006.07.5937
  18. Roach M.C., Videtic G.M., Bradley J.D. IASLC Advanced Radiation Technology Committee. Treatment of Peripheral Non-Small Cell Lung Carcinoma with Stereotactic Body Radiation Therapy. J. Thorac. Oncol. 2015; 10(9): 1261-7. doi: 10.1097/JTO.0000000000000610
  19. Baker R., Han G., Sarangkasiri S., De Marco M., Turke C., Stevens C.W. et al. Clinical and dosimetric predictors of radiation pneumonitis in a large series of patients treated with stereotactic body radiation therapy to the lung. Int. J. Radiat. Oncol. Biol. Phys. 2013; 85(1): 190-5. doi: 10.1016/j.ijrobp.2012.03.041
  20. Benedict S.H., Yenice K.M., Followill D., Calvin J.M., Hinson W., Kavanagh B. et al. Stereotactic body radiation therapy: the report of AAPM task group 101. Med. Phys. 2010; 37: 4078-101. doi: 10.1118/1.3438081
  21. Aoki M., Sato M., Hirose K., Akimoto Y., Kawaguchi H., Hatayama Y. et al. Radiation-induced rib fracture after stereotactic body radiotherapy with a total dose of 54-56 Gy given in 9-7 fractions for patients with peripheral lung tumor: impact of maximum dose and fraction size. Radiat. Oncol. 2015; 10: 99-106. doi: 10.1186/s13014-015-0406-8
  22. Park Y., Kim H.J., Chang A.R. Predictors of chest wall toxicity after stereotactic ablative radiotherapy using real-time tumor tracking for lung tumors. Radiat. Oncol. 2017; 12(1): 66-73. doi: 10.1186/s13014-017-0857-1

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2018


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».