TOPOISOMERASES: FEATURES OF THE ACTION, CLASSIFICATION, CELL FUNCTIONS, INHIBITION, ANTHRAFURANDION


Cite item

Full Text

Abstract

Introduction. Topoisomerases influence on DNA topology and are capable of running down their super spiraling molecules by importation of one- or two-chained ruptures with the subsequent restitution and also the negative super rounds or catenae’s. Topoisomerases are known to be targets for antineoplastic therapy. Inhibitors of these enzymes of various nature and chemical structure are widely used for the suppression of tumor Topoisomerase I and/or II activity with the blocking cells in the phase G2 and a delay of their introduction in mitosis. Such difficult curable tumors as colorectal cancer, carcinoma of the stomach, non-small cell lung cancer and so forth are the most sensitive to these drugs. The search of perspective antineoplastic inhibitors is implemented generally in ranks of the non-camptothecin agents among which heterocyclic condensed nitrogenous compounds, in particular, anthrafurandiones show the most significant results. The review of thematic literature from 2011 to 2018 is devoted to the description of properties of topoisomerase as targets and their inhibitors from perspective classes. Objectives: 1. The analysis of signal characteristics of topoisomerases as targets for anticancer non-camptothecin inhibitors. 2. Identification of structure-activity relationship in the ranks of potential inhibitors of topoisomerases. 3. The choice of the most perspective non-camptothecin topoisomerase inhibitors among heterocyclic condensed nitrogenous compounds on the basis of the comparative analysis of structure and properties. Material and methods. Materials of 79 scientific articles published in the leading biological, biochemical and chemical journals of the different countries within the 8 last years are subjected to the analysis. The structure of the review meets the purpose and tasks of the scientific analysis. Results. The analysis of the thematic literature showed topoisomerases to be relevant targets for antineoplastic therapy of severe oncological pathology. In this regard, intensive search of various pharmaceuticals among topoisomerase inhibitors is performed in recent years. Researchers modify the known basic structures as well as synthesize new compounds. The discovery of a top-directional effect of the known medicines expands the data on their mechanism of the action. To identify the topoisomerase inhibitory activity of the drug the methods with the use of plasmid DNA is applied. The cytotoxic activity, apoptosis induction, including the caspases activation, modification of mitochondrial potential, influence on p53 and others are examined in parallel studies. The research directed on the identification of new effective non-camptothecin oral topoisomerase inhibitors among the anthracyclines derivatives are of undoubted relevance. Such agents, in contrast to Doxorubicin (anthracycline antibiotic widely used for tumor therapy), have moderate toxicity and allow to control the growth of solid tumors and leukemia in mono-therapy mode. Conclusion. In terms of searching of original antineoplastic agents, a class of heterocyclic condensed nitrogenous compounds, first of all, the anthraquinones showing properties of topoisomerase inhibitors is one of the most promising. The results of chemical and biological research of the compounds of this series were laid in a basis of the design of medicinal substances and their drug formulations. Prognostically significant data obtained in preclinical testing allow us to hope that obtained antitumor agents will be highly effective on a clinical stage of trials.

About the authors

Michael I. Treshalin

Gause Institute of New Antibiotics

Email: funky@beatween.ru
MD, senior researcher of the Laboratory of pharmacology and chemotherapy of the Gause Institute of New Antibiotics, Moscow, 119021, Russian Federation Moscow, 119021, Russian Federation

E. V Neborak

The Peoples’ Friendship University of Russia

Moscow, 117198, Russian Federation

References

  1. Chen S.H., Chan N.L., Hsieh T. New mechanistic and functional insights into DNA topoisomerases. Annu. Rev. Biochem. 2013; 82: 139-70. doi: 10.1146/annurev-biochem-061809-100002
  2. Pommier Y., Sun Y., Huang, S.N., Nitiss J.L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell. Biol. 2016; 17: 703-21. doi: 10.1038/nrm.2016.111
  3. Delgado J.L., Hsieh C.M., Chan N.L., Hiasa H. Topoisomerases as anticancer targets. Biochem. J. 2018; 475(2): 373-98. doi: 10.1042/BCJ20160583
  4. Pommier Y. Drugging topoisomerases: lessons and challenges. ACS Chem. Biol. 2013; 8: 82-95. doi: 10.1021/cb300648v
  5. Aldred K.J., Kerns R.J., Osheroff N. Mechanism of quinolone action and resistance. Biochem. 2014; 53(10): 1565-74. doi: 10.1021/bi5000564
  6. Hiasa H. DNA topoisomerases as targets for antibacterial agents. Method. Mol. Biol. 2018; 1703: 47-62. doi: 10.1007/978-1-4939-7459-7_3
  7. Kerns R.J., Towle T.R., Hiasa H. Quinolone-based Compounds with Anticancer Activity. Drugs. 2016; 76(13): 1245-55. PCT Application No. PCT/US2017/065448.-2017.
  8. Wu C.C., Li Y.C. Wang Y.R., Li T.K., Chan N.L. On the structural basis and design guidelines for type II topoisomerase-targeting anticancer drugs. Nucleic Acids Res. 2013; 41(22): 10630-40. doi: 10.1093/nar/gkt828
  9. Ehmann D.E., Lahiri S.D. Novel compounds targeting bacterial DNA topoisomerase/DNA gyrase. Curr. Opin. Pharmacol. 2014; 18: 76-83. doi: 10.1016/j.coph.2014.09.007
  10. Baranello L., Wojtowicz D., Cui K., Devaiah B.N., Chung H.J., Chan-Salis K.Y. et al. RNA polymerase II regulates topoisome-rase 1 activity to favor efficient transcription. Cell. 2016; 165(2): 357-71. doi: 10.1016/j.cell.2016.02.036
  11. Solier S., Ryan M.C., Martin S.E., Varma S., Kohn K.W., Liu H. et al. Transcription poisoning by topoisomerase I is controlled by gene length, splice sites, and miR-142-3p. Cancer Res. 2013; 73: 4830-9. doi: 10.1158/0008-5472.CAN-12-3504
  12. King I.F, Yandava C.N, Mabb A.M., Hsiao J.S., Huang H.-S., Pearson B.L. et al. Topoisomerases facilitate transcription of long genes linked to autism. Nature. 2013; 501: 58-62. doi: 10.1038/nature12504
  13. Sobek S., Dalla Rosa I., Pommier Y., Bornholz B., Kalfalah F., Zhang H. et al. Negative regulation of mitochondrial transcription by mitochondrial topoisomerase I. Nucleic Acids Res. 2013; 41: 9848-57. doi: 10.1093/nar/gkt768
  14. Douarre C., Sourbier C., Dalla Rosa I., Brata Das B., Redon C.E., Zhang H. et al. Mitochondrial topoisomerase I is critical for mitochondrial integrity and cellular energy metabolism. PLoS ONE. 2012; 7: e41094. doi: 10.1371/journal.pone.0041094
  15. Khiati S., Baechler S.A., Factor V.M., Zhang H., Huang S.-y.N., Dalla Rosa I. et al. Lack of mitochondrial topoisomerase I (TOP1mt) impairs liver regeneration. Proc. Natl. Acad. Sci. USA. 2015; 112: 11282-7. doi: 10.1073/pnas.1511016112
  16. Kummar S., Chen, A., Gutierrez M., Pfister T.D., Wang, L., Redon C. et al. Clinical and pharmacologic evaluation of two dosing schedules of indotecan (LMP400), a novel indenoisoquinoline, in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2016; 78: 73-81. doi: 10.1007/s00280-016-2998-6
  17. Schmidt B.H., Osheroff N., Berger J.M. Structure of a topo-isomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity. Nat. Struct. Mol. Biol. 2012; 19: 1147-54. doi: 10.1038/nsmb.2388
  18. Kloskowski T., Gurtowska N., Olkowska J., Nowak, J.M., Ada-mowicz J., Tworkiewicz J., Dębski R., Grzanka A., Drewa T. Ciprofloxacin is a potential topoisomerase II inhibitor for the treatment of NSCLC. Int. J. Oncol. 2012; 41(6): 1943-9. doi: 10.3892/ijo.2012.1653. Epub 2012 Oct 4.
  19. Ma Y.-C., Wang Z.-X., Jin S.-J., Zhang Y.-X., Hu G.-Q., Cui D.-T. et al. Dual Inhibition of Topoisomerase II and Tyrosine Kinases by the Novel Bis-Fluoroquinolone Chalcone-Like Derivative HMNE3 in Human Pancreatic Cancer Cells. PLoS ONE. 2016; 11(10): e0162821. doi: 10.1371/journal.pone.0162821
  20. Jadhav A.K., Karuppayil S.M. Molecular docking studies on thirteen fluoroquinolines with human topoisomerase II a and b. In Silico Pharmacol. 2017; 5(4): 1-4. doi: 10.1007/s40203-017-0024-2
  21. Wang Y., Chen J., Shen R., Yang Ch., Ma Zh., Liu Y. 3-chlorome-thylene-6-fluorothiochroman-4-one, A novel DNA Topoisomerase poison. Pak. J. Pharm. Sci. 2016; 29 (6 Suppl): 2377-2383. PMID: 28167481.
  22. Pal H.C., Katiyar S.K. Cryptolepine, a Plant Alkaloid, Inhibits the Growth of Non-Melanoma Skin Cancer Cells through Inhibition of Topoisomerase and Induction of DNA Damage. Molecules. 2016; 21(12): 1758-64. doi: 10.3390/molecules21121758
  23. Xu H., Chen Q., Wang H., Xu P., Yuan R., Li X., Xue M. Inhibitory effects of lapachol on rat C6 glioma in vitro and in vivo by targeting DNA topoisomerase I and topoisomerase II. J. Exper. Clin. Cancer Res. 2016; 35: 178. doi: 10.1186/s13046-016-0455-3
  24. Jeon K.H., Yu H.B., Kwak S.Y., Kwon Y., Na Y. Synthesis and topoisomerases inhibitory activity of heteroaromatic chalcones. Bioorg. Med. Chem. 2016; 24(22): 5921-8. doi: 10.1016/j.bmc.2016.09.051. Epub 2016 Sep 21.
  25. Fiorito S., Epifano F., Bruyère C., Mathieu V., Kiss R., Genovese S. Growth inhibitory activity for cancer cell lines of lapachol and its natural and semi-synthetic derivatives. Bioorg. Med. Chem. Lett. 2014; 24: 454-7. doi: 10.1016/j.bmcl.2013.12.049
  26. Sunassee S.N., Veale C.G.L., Shunmoogam-Gounden N., Oso-niyi O., Hendricks D.T., Caira M.R., de la Mare J.-A., Edkins A.L., Pinto A.V., da Silva J. E.N., Davies-Coleman M.T. Cytotoxicity of lapachol, β-lapachone and related synthetic 1,4-naphthoquinones against oesophageal cancer cells. Eur. J. Med. Chem. 2013; 62: 98-110. doi: 10.1016/j.ejmech.2012.12.048
  27. Zhang C., Qu Y., Niu B. Design, synthesis and biological evaluation of lapachol derivatives possessing indole scaffolds as topo-isomerase I inhibitors. Bioorg. Med. Chem. 2016; 24(22): 5781-6. doi: 10.1016/j.bmc.2016.09.034. Epub 2016 Sep 15.
  28. Chen T.W., Tsai K.D., Yang S.M., Wong H.Y., Liu Y.H., Cherng J., Chou K.S., Wang Y.T., Cuizon J., Cherng J.M. Discovery of a Novel Anti-Cancer Agent Targeting Both Topoisomerase I & II as Well as Telomerase Activities in Human Lung Adenocarcinoma A549 Cells In Vitro and In Vivo: Cinnamomum verum Component Cuminaldehyde. Curr. Cancer Drug Targets. 2016; 16(9): 796-806. doi: 10.2174/1568009616666160426125526
  29. Rao S.A.V., Vishnu M.V.P.S.V., Reddy N.V.S., Reddy T.S., Shaik S.P., Bagul Ch., Kamal A. Synthesis and biological evaluation of imidazopyridinyl-1,3,4-oxadiazole conjugates as apoptosis inducers and topoisomerase IIα inhibitors. Bioorgan. Chem. 2016; 69: 7-19. doi: 10.1016/j.bioorg.2016.09.002
  30. Riddell I.A., Park G.Y., Agama K., Pommier Y., Lippard S.J. Phenanthriplatin Acts as a Covalent Topoisomerase II Poison. ACS Chem. Biol. 2016; 11(11): 2996-3001. doi: 10.1021/acschembio.6b00565
  31. Meier C., Steinhauer T.N., Koczian F., Plitzko B., Jarolim K., Girreser U., Braig S., Marko D., Vollmar A.M., Clement B. A Dual Topoisomerase Inhibitor of Intense Pro-Apoptotic and Antileukemic Nature for Cancer Treatment. Chem. Med. Chem. 2017; 12(5): 347-52. doi: 10.1002/cmdc.201700026. Epub 2017 Feb 8.
  32. Zhang B., Li X., Li B., Gao C., Jiang Y. Acridine and its derivatives: a patent review (2009-2013). Expert Opin. Ther. Pat. 2014; 24(6): 647-64. doi: 10.1517/13543776.2014.902052
  33. Matsumoto H., Yamashita T., Tahara S., Hayakawa Sh., Wada K., Tomiok A. Design, synthesis, and evaluation of DNA topoisome-rase II-targeted nucleosides. Bioorg. Med. Chem. 2018; 26 (8): 1920-8. doi: 10.1016/j.bmc.2017.06.001
  34. Sović I., Jambon, S., Pavelić S.K., Markova-Car E., Ilić N., Depauw S., David-Cordonnier M.-H., Karminski-Zamola G. Synthesis, antitumor activity and DNA binding features of benzothiazolyl and benzimidazolyl substituted isoindolines. Bioorg. Med. Chem. 2018; 26 (8): 1950-60. doi: 10.1016/j.bmc.2018.02.045
  35. Shchekotikhin A.E., Glazunova V.A., Dezhenkova L.G., Shevtsova E.K., Traven V.F., Balzarini J., Huang H.S., Shtil A.A., Preobrazhenskaya M.N. The first series of 4,11-bis[(2-aminoethyl)-amino]anthra[2,3-b]furan-5,10-diones: Synthesis and anti-proli-ferative characteristics. Eur. J. Med. Chem. 2011; 46(1): 423-8. doi: 10.1016/j.ejmech.2010.11.017. Epub 2010 Nov 19.
  36. Tikhomirov A.S., Shchekotikhin A.E., Lee Y.H., Chen Y.A., Yeh C.A., Tatarskiy V.V. Jr, Dezhenkova L.G., Glazunova V.A., Balzarini J., Shtil A.A., Preobrazhenskaya M.N., Chueh P.J. Synthesis and Characterization of 4.11-Diaminoanthra[2,3-b]-furan-5,10-diones: Tumor Cell Apoptosis through tNOX-Modu-lated NAD(+)/NADH Ratio and SIRT1. J. Med. Chem. 2015; 58(24): 9522-34. doi: 10.1021/acs.jmedchem.5b00859. Epub 2015 Dec 15.
  37. Shchekotikhin A.E., Dezhenkova L.G., Tsvetkov V.B., Luzikov Y.N., Volodina Y.L., Tatarskiy V.V. Jr., Kalinina A.A., Treshalin M.I., Treshalina H.M., Romanenko V.I., Kaluzhny, D.N., Kubbutat M., Schols D., Pommier Y., Shtil A.A., Preobrazhenskaya M.N. Discovery of antitumor anthra[2,3-b]furan-3-carboxamides: Optimization of synthesis and evaluation of antitumor properties. Eur. J. Med. Chem. 2016; 112: 114-29. doi: 10.1016/j.ejmech.2016.01.050
  38. Miglietta G., Cogoi S., Marinello J., Capranico G., Tikhomirov A.S., Shchekotikhin A.E., Xodo L.E. RNA G-Quadruplexes in Kirsten Ras (KRAS) oncogene as targets for small molecules inhibiting translation. J. Med. Chem. 2017; 60(23): 9448-61. doi: 10.1021/acs.jmedchem.7b00622
  39. Treshalina H.M., Romanenko V.I., Kaluzhny D.N., Treshalin M.I., Nikitin A.A., Tikhomirov A.S., Shchekotikhin A.E. Development and pharmaceutical evaluation of the anticancer Anthrafuran/Cavitron complex, a prototypic parenteral drug formulation. Eur. J. Pharm. Sci. 2017; 109: 631-7. doi: 10.1016/j.ejps.2017.09.025
  40. Tikhomirov A.S., Lin C.-Y., Volodina Y.L., Dezhenkova L.G., Tatarskiy V.V., Schols D., Shtil A.A., Kaur P., Chueh P.J., Shchekotikhin A.E. New antitumor anthra[2,3-b]furan-3-carboxamides: Synthesis and structure-activity relationship. Eur. J. Med. Chem. 2018; 148: 128-39. doi: 10.1016/j.ejmech.2018.02.027
  41. Shchekotikhin A.E., Treshalina E.M., Treshalin I.D. Oral antineoplastic agents and methods of treatment of oncological diseases. Patent RF №2639479. 2017. http://www.findpatent.ru/patent/263/2639479.html. (in Russian)/ Щекотихин А.Е., Трещалина Е.М., Трещалин И.Д. Пероральные противоопухолевые средства и способы лечения онкологических заболеваний. Патент РФ № 2639479. 2017. http://www.findpatent.ru/patent/263/2639479.html.
  42. Переверзева Э.Р., Трещалин М.И., Еремкин Н.В., Щекотихин А.Е., Трещалин И.Д. Токсикологическая характеристика нового противоопухолевого мультитаргетного препарата антрафуран. Российский биотерапевтический журнал. 2017; 16 (4): 80-4. doi: 10.17650/1726-9784-2017-16-4-80-84

Copyright (c) 2018 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies