TOPOISOMERASES: FEATURES OF THE ACTION, CLASSIFICATION, CELL FUNCTIONS, INHIBITION, ANTHRAFURANDION
- 作者: Treshalin M.I.1, Neborak E.V2
-
隶属关系:
- Gause Institute of New Antibiotics
- The Peoples’ Friendship University of Russia
- 期: 卷 23, 编号 2 (2018)
- 页面: 60-70
- 栏目: Articles
- URL: https://journals.rcsi.science/1028-9984/article/view/42960
- DOI: https://doi.org/10.18821/1028-9984-2018-23-2-60-70
- ID: 42960
如何引用文章
全文:
详细
作者简介
Michael Treshalin
Gause Institute of New Antibiotics
Email: funky@beatween.ru
MD, senior researcher of the Laboratory of pharmacology and chemotherapy of the Gause Institute of New Antibiotics, Moscow, 119021, Russian Federation Moscow, 119021, Russian Federation
E. Neborak
The Peoples’ Friendship University of RussiaMoscow, 117198, Russian Federation
参考
- Chen S.H., Chan N.L., Hsieh T. New mechanistic and functional insights into DNA topoisomerases. Annu. Rev. Biochem. 2013; 82: 139-70. doi: 10.1146/annurev-biochem-061809-100002
- Pommier Y., Sun Y., Huang, S.N., Nitiss J.L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell. Biol. 2016; 17: 703-21. doi: 10.1038/nrm.2016.111
- Delgado J.L., Hsieh C.M., Chan N.L., Hiasa H. Topoisomerases as anticancer targets. Biochem. J. 2018; 475(2): 373-98. doi: 10.1042/BCJ20160583
- Pommier Y. Drugging topoisomerases: lessons and challenges. ACS Chem. Biol. 2013; 8: 82-95. doi: 10.1021/cb300648v
- Aldred K.J., Kerns R.J., Osheroff N. Mechanism of quinolone action and resistance. Biochem. 2014; 53(10): 1565-74. doi: 10.1021/bi5000564
- Hiasa H. DNA topoisomerases as targets for antibacterial agents. Method. Mol. Biol. 2018; 1703: 47-62. doi: 10.1007/978-1-4939-7459-7_3
- Kerns R.J., Towle T.R., Hiasa H. Quinolone-based Compounds with Anticancer Activity. Drugs. 2016; 76(13): 1245-55. PCT Application No. PCT/US2017/065448.-2017.
- Wu C.C., Li Y.C. Wang Y.R., Li T.K., Chan N.L. On the structural basis and design guidelines for type II topoisomerase-targeting anticancer drugs. Nucleic Acids Res. 2013; 41(22): 10630-40. doi: 10.1093/nar/gkt828
- Ehmann D.E., Lahiri S.D. Novel compounds targeting bacterial DNA topoisomerase/DNA gyrase. Curr. Opin. Pharmacol. 2014; 18: 76-83. doi: 10.1016/j.coph.2014.09.007
- Baranello L., Wojtowicz D., Cui K., Devaiah B.N., Chung H.J., Chan-Salis K.Y. et al. RNA polymerase II regulates topoisome-rase 1 activity to favor efficient transcription. Cell. 2016; 165(2): 357-71. doi: 10.1016/j.cell.2016.02.036
- Solier S., Ryan M.C., Martin S.E., Varma S., Kohn K.W., Liu H. et al. Transcription poisoning by topoisomerase I is controlled by gene length, splice sites, and miR-142-3p. Cancer Res. 2013; 73: 4830-9. doi: 10.1158/0008-5472.CAN-12-3504
- King I.F, Yandava C.N, Mabb A.M., Hsiao J.S., Huang H.-S., Pearson B.L. et al. Topoisomerases facilitate transcription of long genes linked to autism. Nature. 2013; 501: 58-62. doi: 10.1038/nature12504
- Sobek S., Dalla Rosa I., Pommier Y., Bornholz B., Kalfalah F., Zhang H. et al. Negative regulation of mitochondrial transcription by mitochondrial topoisomerase I. Nucleic Acids Res. 2013; 41: 9848-57. doi: 10.1093/nar/gkt768
- Douarre C., Sourbier C., Dalla Rosa I., Brata Das B., Redon C.E., Zhang H. et al. Mitochondrial topoisomerase I is critical for mitochondrial integrity and cellular energy metabolism. PLoS ONE. 2012; 7: e41094. doi: 10.1371/journal.pone.0041094
- Khiati S., Baechler S.A., Factor V.M., Zhang H., Huang S.-y.N., Dalla Rosa I. et al. Lack of mitochondrial topoisomerase I (TOP1mt) impairs liver regeneration. Proc. Natl. Acad. Sci. USA. 2015; 112: 11282-7. doi: 10.1073/pnas.1511016112
- Kummar S., Chen, A., Gutierrez M., Pfister T.D., Wang, L., Redon C. et al. Clinical and pharmacologic evaluation of two dosing schedules of indotecan (LMP400), a novel indenoisoquinoline, in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2016; 78: 73-81. doi: 10.1007/s00280-016-2998-6
- Schmidt B.H., Osheroff N., Berger J.M. Structure of a topo-isomerase II-DNA-nucleotide complex reveals a new control mechanism for ATPase activity. Nat. Struct. Mol. Biol. 2012; 19: 1147-54. doi: 10.1038/nsmb.2388
- Kloskowski T., Gurtowska N., Olkowska J., Nowak, J.M., Ada-mowicz J., Tworkiewicz J., Dębski R., Grzanka A., Drewa T. Ciprofloxacin is a potential topoisomerase II inhibitor for the treatment of NSCLC. Int. J. Oncol. 2012; 41(6): 1943-9. doi: 10.3892/ijo.2012.1653. Epub 2012 Oct 4.
- Ma Y.-C., Wang Z.-X., Jin S.-J., Zhang Y.-X., Hu G.-Q., Cui D.-T. et al. Dual Inhibition of Topoisomerase II and Tyrosine Kinases by the Novel Bis-Fluoroquinolone Chalcone-Like Derivative HMNE3 in Human Pancreatic Cancer Cells. PLoS ONE. 2016; 11(10): e0162821. doi: 10.1371/journal.pone.0162821
- Jadhav A.K., Karuppayil S.M. Molecular docking studies on thirteen fluoroquinolines with human topoisomerase II a and b. In Silico Pharmacol. 2017; 5(4): 1-4. doi: 10.1007/s40203-017-0024-2
- Wang Y., Chen J., Shen R., Yang Ch., Ma Zh., Liu Y. 3-chlorome-thylene-6-fluorothiochroman-4-one, A novel DNA Topoisomerase poison. Pak. J. Pharm. Sci. 2016; 29 (6 Suppl): 2377-2383. PMID: 28167481.
- Pal H.C., Katiyar S.K. Cryptolepine, a Plant Alkaloid, Inhibits the Growth of Non-Melanoma Skin Cancer Cells through Inhibition of Topoisomerase and Induction of DNA Damage. Molecules. 2016; 21(12): 1758-64. doi: 10.3390/molecules21121758
- Xu H., Chen Q., Wang H., Xu P., Yuan R., Li X., Xue M. Inhibitory effects of lapachol on rat C6 glioma in vitro and in vivo by targeting DNA topoisomerase I and topoisomerase II. J. Exper. Clin. Cancer Res. 2016; 35: 178. doi: 10.1186/s13046-016-0455-3
- Jeon K.H., Yu H.B., Kwak S.Y., Kwon Y., Na Y. Synthesis and topoisomerases inhibitory activity of heteroaromatic chalcones. Bioorg. Med. Chem. 2016; 24(22): 5921-8. doi: 10.1016/j.bmc.2016.09.051. Epub 2016 Sep 21.
- Fiorito S., Epifano F., Bruyère C., Mathieu V., Kiss R., Genovese S. Growth inhibitory activity for cancer cell lines of lapachol and its natural and semi-synthetic derivatives. Bioorg. Med. Chem. Lett. 2014; 24: 454-7. doi: 10.1016/j.bmcl.2013.12.049
- Sunassee S.N., Veale C.G.L., Shunmoogam-Gounden N., Oso-niyi O., Hendricks D.T., Caira M.R., de la Mare J.-A., Edkins A.L., Pinto A.V., da Silva J. E.N., Davies-Coleman M.T. Cytotoxicity of lapachol, β-lapachone and related synthetic 1,4-naphthoquinones against oesophageal cancer cells. Eur. J. Med. Chem. 2013; 62: 98-110. doi: 10.1016/j.ejmech.2012.12.048
- Zhang C., Qu Y., Niu B. Design, synthesis and biological evaluation of lapachol derivatives possessing indole scaffolds as topo-isomerase I inhibitors. Bioorg. Med. Chem. 2016; 24(22): 5781-6. doi: 10.1016/j.bmc.2016.09.034. Epub 2016 Sep 15.
- Chen T.W., Tsai K.D., Yang S.M., Wong H.Y., Liu Y.H., Cherng J., Chou K.S., Wang Y.T., Cuizon J., Cherng J.M. Discovery of a Novel Anti-Cancer Agent Targeting Both Topoisomerase I & II as Well as Telomerase Activities in Human Lung Adenocarcinoma A549 Cells In Vitro and In Vivo: Cinnamomum verum Component Cuminaldehyde. Curr. Cancer Drug Targets. 2016; 16(9): 796-806. doi: 10.2174/1568009616666160426125526
- Rao S.A.V., Vishnu M.V.P.S.V., Reddy N.V.S., Reddy T.S., Shaik S.P., Bagul Ch., Kamal A. Synthesis and biological evaluation of imidazopyridinyl-1,3,4-oxadiazole conjugates as apoptosis inducers and topoisomerase IIα inhibitors. Bioorgan. Chem. 2016; 69: 7-19. doi: 10.1016/j.bioorg.2016.09.002
- Riddell I.A., Park G.Y., Agama K., Pommier Y., Lippard S.J. Phenanthriplatin Acts as a Covalent Topoisomerase II Poison. ACS Chem. Biol. 2016; 11(11): 2996-3001. doi: 10.1021/acschembio.6b00565
- Meier C., Steinhauer T.N., Koczian F., Plitzko B., Jarolim K., Girreser U., Braig S., Marko D., Vollmar A.M., Clement B. A Dual Topoisomerase Inhibitor of Intense Pro-Apoptotic and Antileukemic Nature for Cancer Treatment. Chem. Med. Chem. 2017; 12(5): 347-52. doi: 10.1002/cmdc.201700026. Epub 2017 Feb 8.
- Zhang B., Li X., Li B., Gao C., Jiang Y. Acridine and its derivatives: a patent review (2009-2013). Expert Opin. Ther. Pat. 2014; 24(6): 647-64. doi: 10.1517/13543776.2014.902052
- Matsumoto H., Yamashita T., Tahara S., Hayakawa Sh., Wada K., Tomiok A. Design, synthesis, and evaluation of DNA topoisome-rase II-targeted nucleosides. Bioorg. Med. Chem. 2018; 26 (8): 1920-8. doi: 10.1016/j.bmc.2017.06.001
- Sović I., Jambon, S., Pavelić S.K., Markova-Car E., Ilić N., Depauw S., David-Cordonnier M.-H., Karminski-Zamola G. Synthesis, antitumor activity and DNA binding features of benzothiazolyl and benzimidazolyl substituted isoindolines. Bioorg. Med. Chem. 2018; 26 (8): 1950-60. doi: 10.1016/j.bmc.2018.02.045
- Shchekotikhin A.E., Glazunova V.A., Dezhenkova L.G., Shevtsova E.K., Traven V.F., Balzarini J., Huang H.S., Shtil A.A., Preobrazhenskaya M.N. The first series of 4,11-bis[(2-aminoethyl)-amino]anthra[2,3-b]furan-5,10-diones: Synthesis and anti-proli-ferative characteristics. Eur. J. Med. Chem. 2011; 46(1): 423-8. doi: 10.1016/j.ejmech.2010.11.017. Epub 2010 Nov 19.
- Tikhomirov A.S., Shchekotikhin A.E., Lee Y.H., Chen Y.A., Yeh C.A., Tatarskiy V.V. Jr, Dezhenkova L.G., Glazunova V.A., Balzarini J., Shtil A.A., Preobrazhenskaya M.N., Chueh P.J. Synthesis and Characterization of 4.11-Diaminoanthra[2,3-b]-furan-5,10-diones: Tumor Cell Apoptosis through tNOX-Modu-lated NAD(+)/NADH Ratio and SIRT1. J. Med. Chem. 2015; 58(24): 9522-34. doi: 10.1021/acs.jmedchem.5b00859. Epub 2015 Dec 15.
- Shchekotikhin A.E., Dezhenkova L.G., Tsvetkov V.B., Luzikov Y.N., Volodina Y.L., Tatarskiy V.V. Jr., Kalinina A.A., Treshalin M.I., Treshalina H.M., Romanenko V.I., Kaluzhny, D.N., Kubbutat M., Schols D., Pommier Y., Shtil A.A., Preobrazhenskaya M.N. Discovery of antitumor anthra[2,3-b]furan-3-carboxamides: Optimization of synthesis and evaluation of antitumor properties. Eur. J. Med. Chem. 2016; 112: 114-29. doi: 10.1016/j.ejmech.2016.01.050
- Miglietta G., Cogoi S., Marinello J., Capranico G., Tikhomirov A.S., Shchekotikhin A.E., Xodo L.E. RNA G-Quadruplexes in Kirsten Ras (KRAS) oncogene as targets for small molecules inhibiting translation. J. Med. Chem. 2017; 60(23): 9448-61. doi: 10.1021/acs.jmedchem.7b00622
- Treshalina H.M., Romanenko V.I., Kaluzhny D.N., Treshalin M.I., Nikitin A.A., Tikhomirov A.S., Shchekotikhin A.E. Development and pharmaceutical evaluation of the anticancer Anthrafuran/Cavitron complex, a prototypic parenteral drug formulation. Eur. J. Pharm. Sci. 2017; 109: 631-7. doi: 10.1016/j.ejps.2017.09.025
- Tikhomirov A.S., Lin C.-Y., Volodina Y.L., Dezhenkova L.G., Tatarskiy V.V., Schols D., Shtil A.A., Kaur P., Chueh P.J., Shchekotikhin A.E. New antitumor anthra[2,3-b]furan-3-carboxamides: Synthesis and structure-activity relationship. Eur. J. Med. Chem. 2018; 148: 128-39. doi: 10.1016/j.ejmech.2018.02.027
- Shchekotikhin A.E., Treshalina E.M., Treshalin I.D. Oral antineoplastic agents and methods of treatment of oncological diseases. Patent RF №2639479. 2017. http://www.findpatent.ru/patent/263/2639479.html. (in Russian)/ Щекотихин А.Е., Трещалина Е.М., Трещалин И.Д. Пероральные противоопухолевые средства и способы лечения онкологических заболеваний. Патент РФ № 2639479. 2017. http://www.findpatent.ru/patent/263/2639479.html.
- Переверзева Э.Р., Трещалин М.И., Еремкин Н.В., Щекотихин А.Е., Трещалин И.Д. Токсикологическая характеристика нового противоопухолевого мультитаргетного препарата антрафуран. Российский биотерапевтический журнал. 2017; 16 (4): 80-4. doi: 10.17650/1726-9784-2017-16-4-80-84
补充文件
