TISSUE GROWTH FACTORS OF VEGF FAMILY IN DYNAMICS OF THE DEVELOPMENT OF OVARIAN CANCER


Cite item

Full Text

Abstract

Ovarian carcinoma is the leading cause of death from gynecological cancer. Aim of the study is to reveal the role of VEGF-C comparing to VEGF-А in the progression of ovarian cancer. Material and methods. Tissue samples obtained from 76 patients with epithelial ovarian cancer (serous cystadenocarcinoma: T1N0M0; T2N0M0; T3NxM0; T4Nx-1M0) and 47 patients with cystadenoma were studied. Histological control was performed in all cases. Ovaries of 20 patients obtained during the surgery for uterine myoma were used as the intact tissue. All patients were 50.9 ± 2.9 years old. Levels of the growth factor as VEGF-A and its receptor VEGF-R1, as well VEGF-С and its receptor sVEGF-R3 - were measured by ELISA with the use of standard test systems. Results. VEGF-А levels in cystadenomas and intact tissue were similar, while in cystadenocarcinomas VEGF-А was significantly higher at all stages of the tumor development. sVEGF-R1 receptor in cystadenomas was lower in comparison with the intact tissue, in the contralateral ovary in T1N0M0 and in the tumorous ovary in T4Nx-1M0. VEGF-С level was higher significantly in all tumors, in cystadenocarcinomas it was higher if compared to cystadenomas. Its increase in the contralateral ovary in T1N0M0 differed from other tissue values being average. sVEGF-R3 receptor increased significantly at the later stages of ovarian cancer - T3NxM0 and T4Nx-1M0; its level was low only in the contralateral ovary in T1N0M0, and the values in other tissues were similar to the intact ones. Conclusion. The results show a high rate of lymphatic vessel formation in benign tumors at all stages of the development of the malignant tumor. The significant increase in VEGF-C level in the contralateral (non-tumorous) ovaries, compared to the intact tissue, allows considering VEGF-C, along with VEGF-А, as a pathogenetic factor of ovarian tumor development.

About the authors

O. I Kit

Rostov Research Institute of Oncology

Rostov-on-Don, 344037, Russian Federation

E. M Frantsiyants

Rostov Research Institute of Oncology

Rostov-on-Don, 344037, Russian Federation

T. I Moiseenko

Rostov Research Institute of Oncology

Rostov-on-Don, 344037, Russian Federation

E. V Verenikina

Rostov Research Institute of Oncology

Rostov-on-Don, 344037, Russian Federation

N. D Cheryarina

Rostov Research Institute of Oncology

Rostov-on-Don, 344037, Russian Federation

Larisa S. Kozlova

Rostov Research Institute of Oncology

Email: super.gormon@ya.ru
MD, PhD, Senior Researcher, Rostov-on-Don, 344037, Russian Federation. Rostov-on-Don, 344037, Russian Federation

Yu. A Pogorelova

Rostov Research Institute of Oncology

Rostov-on-Don, 344037, Russian Federation

L. Ya Rosenko

Rostov Research Institute of Oncology

Rostov-on-Don, 344037, Russian Federation

References

  1. Kathleen R.C., Ie-Ming S. Ovarian cancer. Annu. Rev. Pathol. 2009; (4): 287-313. doi: 10.1146/annurev.pathol.4.110807.092246
  2. Lynch H.T., Casey M.J., Snyder C.L., Bewtra C., Lynch J.F., Butts M., Godwin A.K. Hereditary ovarian cancer: molecular genetics, pathology, management and heterogeneity. Mol. Oncol. 2009; 3(2): 97-137. doi: 10.1016/j.molonc.2009.02.004
  3. Vaughan S., Coward J.I., Bast Jr.R.C., Berchuck A., Berek J.S., Brenton J.D. et al. Rethinking ovarian cancer: Recommendations for improving outcomes. Nat. Rev. Cancer.2011; 11(10): 719-25. doi: 10.1038/nrc3144.
  4. Janardhan B., Vaderhobli S., Bhagat R., Chennagiri Srinivasamurthy P., Venketeshiah Reddihalli P. et al. Investigating impact of vascular endothelial growth factor polymorphisms in epithelial ovarian cancers: A study in the Indian population. PLoS One. 2015; 10(7): e0131190. doi: 10.1371/journal.pone.0131190. eCollection 2015.
  5. Coticchia C.M., Yang J., Moses, M.A. Ovarian cancer biomarkers: current options and future promise. J. Natl. Compr. Cancer Netw. 2008; 6: 795-802.
  6. Ziogas A.C., Gavalas N.G., Tsiatas M., Tsitsilonis O., Politi E., Terpos E. et al. VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor type 2. Int. J. Cancer. 2012; 130(4): 857-64. doi: 10.1002/ijc.26094
  7. Matsuo K., Sheridan T.B., Yoshino K., Miyake T., Hew K.E., Im D.D. et al. Significance of lymphovascular space invasion in epithelial ovarian cancer. Cancer Med. 2012; 1(2): 156-64. doi: 10.1002/cam4.31.
  8. Chen M., Jin Y., Bi Y., Li Y., Shan Y., Pan L. Prognostic significance of lymphovascular space invasion in epithelial ovarian cancer. J. Cancer. 2015; 6(5): 412-9. doi: 10.7150/jca.11242
  9. Tyler H.D.J, Ellis L.M. The role of vascular endothelial growth factor in the way of growth and tumor angiogenesis. J. Clin. Oncol. 2005; 23: 1011-27.
  10. Akcay T., Yasar O., Kuseyri M.A., Dincer Y., Aydinli K., Benian A.et al.Significance of serum c-erbB-2 oncoprotein, insulin-like growth factor-1 and vascular endothelial growth factor levels in ovarian cancer.Bratisl. Lek. Listy. 2016; 117(3): 156-60. PMID: 26925746 [PubMed - in process]
  11. Bekes I., Thomas W., Friedl P., Köhler T., Möbus V., Janni W. et al.Does VEGF facilitate local tumor growth and spread into the abdominal cavity by suppressing endothelial cell adhesion, thus increasing vascular peritoneal permeability followed by ascites production in ovarian cancer? Mol. Cancer. 2016; 15: 13. Published online 2016 February 12. doi: 10.1186/s12943-016-0497-3
  12. Masumi-Moghaddam S., Amini A., Morris D.L., Pourgholami M.H. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastas. Rev. 2012; 31(1-2): 143-62. doi: 10.1007/s10555-011-9337-5
  13. Chang D., Liang B., Li Y. Serum vascular endothelial growth factor (VEGF-C) as a diagnostic and prognostic marker in patients with ovarian cancer. PLoS. One. 2013; 8(2): e55309. DOI: 10.1371 / journal.pone.0055309.
  14. Szubert S., Szpurek D., Moszynski R., Nowitzki M., Frankowski A., Sajdak S. et al. Extracellular expression (EMMPRIN) matrix metalloproteinase inducer is positively correlated with angiogenesis active and negatively with basic fibroblast growth factor expression in epithelial ovarian cancer. J. Cancer Res. Clin. Oncol.2014; 140(3): 361-9. DOI: 10.1007 / s00432-013-1569-z
  15. Van der Bilt A.R., van der Zee A.G., de Vries E.G., de Jong S., Timmer-Bosscha H., ten Hoor K.A.et al.Multiple VEGF family members are simultaneously expressed in ovarian cancer: a proposed model for bevacizumab resistance. Curr. Pharm. Des. 2012; 18(25): 3784-92. PMID: 22591424 [PubMed - indexed for MEDLINE].
  16. Lozneanu L., Avădanei R., Cîmpean A.M., Giuşcă S.E., Amălinei C., Căruntu I.D. Relationship between the role proangiogenic EG-VEGF, the clinical and pathological characteristics and survival of the tumor in the ovary. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2015; 119 (2): 461-5.PMID: 26204653 [PubMed - indexed for MEDLINE]
  17. Masumi-Moghaddam S., Amini A., Wei A.Q., Robertson G., Morris D.L. Vascular endothelial growth factor expression correlates with serum CA125 and is a useful tool to predict refractory to chemotherapy based platinum and ascites formation in epithelial ovarian cancer. Oncotarget. 2015; 6 (29): 28491-501. DOI: 10,18632 / oncotarget.4427
  18. Daye Cheng, Bin Liang, Yunhui Li. Serum vascular endothelial growth factor (VEGF-C) as a diagnostic and prognostic marker in patients with ovarian cancer. PLoS One. 2013; 8(2): e55309. doi: 10.1371/journal.pone.0055309PMCID: PMC3562180
  19. Decio A., Taraboletti G., Patton V., Alzani R., Perego P., Fruscio R. et al.Vascular endothelial growth factor c promotes ovarian carcinoma progression through paracrine and autocrine mechanisms. Am J. Pathol. 2014; 184(4): 1050-61. doi: 10.1016/j.ajpath.2013.12.030
  20. Shao M., Hollar S., Chambliss D., Schmitt J., Emerson R., Chelladurai B. et al. Targeting the insulin growth factor and the vascular endothelial growth factor pathways in ovarian cancer. Author manuscript; available in PMC 2015. Published in final edited form as: Mol. Cancer Ther. 2012; 11(7): 1576-86. doi: 10.1158/1535-7163.MCT-11-0961
  21. Ravikumar G., Crasta J.A. Vascular endothelial growth factor expression in ovarian serous carcinomas and its effect on tumor proligeration. South Asian J. Cancer. 2013; (2): 87-90.
  22. Bednarek W., Wertel I., Kotarski J. Lymphangiogenesis in cancer. Ginekol. Pol. 2008; 79 (9): 625-9. PMID: 18939514 [PubMed - indexed for MEDLINE]
  23. Sinn B.V., Darb-Esfahani S., Wirtz R.M., Faggad A., Weichert W., Buckendahl A.C. et al. Vascular endothelial growth factor C mRNA expression is a prognostic factor in epithelial ovarian cancer as detected by kinetic RT-PCR in formalin-fixed paraffin tissue. Virchows Arch. 2009; 455(6): 461-7. DOI: 10.1007 / s00428-009-0851-6
  24. Taraboletti D.G., Patton V., Alzani R., Perego P., Fruscio R., Jürgensmeier J.M. et al. Vascular endothelial growth factor contributes to the progression of ovarian carcinoma through paracrine and autocrine mechanisms. Am. J. Pathol. 2014; 184(4): 1050-61.

Copyright (c) 2017 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies