TRANSDERMAL FENTANYL: PHARMACOLOGICAL ASPECTS OF THERAPY IN CANCER PATIENTS. PART 2. APPLICATION FEATURES OF TRANSDERMAL FENTANYL FORMULATIONS


Cite item

Full Text

Abstract

Second part of the article summarizes factors influencing transdermal phentanyl pharmacokinetics. Data obtained from genetic studies of factors that could explain the individual variability in fentanyl activity are given. Main aspects of transdermal fentanyl administration with regard to the dosage, patch application and efficacy assessment as well as adverse effects and drug interactions are reviewed. Besides the most common medication errors related to transdermal opioid are analyzed.

About the authors

Aleksander V. Sidorov

Yaroslavl State Medical University

Email: alekssidorov@ya.ru
MD, PhD, DSc, Associate Professor of the Department of Pharmacology, Yaroslavl, 150000, Russian Federation Yaroslavl, 150000, Russian Federation

References

  1. Инструкция по медицинскому применению ТТС бупренорфина (Транстек®).
  2. Инструкция по медицинскому применению ТТС фентанила (Фендивия®).
  3. Solassol I., Caumette L., Bressolle F. et al. Inter- and intra-individual variability in transdermal fentanyl absorption in cancer pain patients. Oncol. Rep. 2005;14(4):1029-36.
  4. Shomaker T.S., Zhang J., Ashburn M.A. Assessing the impact of heat on the systemic delivery of fentanyl through the transdermal fentanyl delivery system. Pain Med. 2000; 1: 225-30.
  5. Ashburn M.A., Ogden L.L., Zhang J., Love G., Basta S.V. The pharmacokinetics of transdermal fentanyl delivered with and without controlled heat. J. Pain. 2003; 4: 291-7.
  6. FDA Public Health Advisory: Important Information for the Safe Use of Fentanyl Transdermal System (Patch). (12/21/2007) Доступно по ссылке: www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm051257.htm (дата обращения: 18.12.2016).
  7. Moore K.T., Sathyan G., Richarz U. et al. Randomized 5-treatment crossover study to assess the effects of external heat on serum fentanyl concentrations during treatment with transdermal fentanyl systems. J. Clin. Pharmacol. 2012; 52: 1174-85.
  8. Kuip E.J., Zandvliet M.L., Koolen S.L., Mathijssen R.H., Rijt C.C. A review of factors explaining variability in fentanyl pharmacokinetics; focus on implications for cancer patients. Br. J. Clin. Pharmacol. 2016. doi: 10.1111/bcp.13129. [Epub ahead of print].
  9. Schneider E., Brune K. Opioid activity and distribution of fentanyl metabolites. Naunyn. Schmiedebergs Arch. Pharmacol.1986; 334(3): 267-74.
  10. Labroo R.B., Paine M.F., Thummel K.E., Kharasch E.D. Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab. Dispos. 1997; 25(9): 1072-80.
  11. Grond S., Radbruch L., Lehmann K.A. Clinical pharmacokinetics of transdermal opioids: focus on transdermal fentanyl. Clin. Pharmacokinet. 2000; 38(1): 59-89.
  12. Jin M., Gock S.B., Jannetto P.J. et al. Pharmacogenomics as molecular autopsy for forensic toxicology: genotyping cytochrome P450 3A4*1B and 3A5*3 for 25 fentanyl cases. J. Anal. Toxicol. 2005; 29(7): 590-8.
  13. Ziesenitz V.C., Konig S.K., Mahlke N.S., Skopp G., Burhenne J., Mikus G. Pharmacokinetic interaction of intravenous fentanyl with ketoconazole. J. Clin. Pharmacol. 2015; 55(6): 708-17.
  14. Lötsch J., Walter C., Parnham M.J., Oertel B.G., Geisslinger G. Pharmacokinetics of Non-Intravenous Formulations of Fentanyl. Clin. Pharmacokinet. 2013; 52: 23-36.
  15. Page C.P., Curtis M.J., Walker M.J.A., Hoffman B.B. Integrated Pharmacology. 3d ed. Elsevier Ltd. 2006.
  16. Zhang Y. Wang D., Johnson A.D., Papp A.C., Sadee W. Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. J. Biol. Chem. 2005; 280(38): 32618-24.
  17. Pasternak G.W. Molecular insights into mu opioid pharmacology: From the clinic to the bench. Clin. J. Pain. 2010; 26 (Suppl 10): S3-9.
  18. Schwantes-An T.H., Zhang J., Chen L.S., Hartz S.M., Culverhouse R.C., Chen X. et al. Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts. Behav. Genet. 2016; 46(2): 151-69.
  19. Oertel B.G., Kettner M., Scholich K., Renne C., Roskam B., Geisslinger G.et al. A common human micro-opioid receptor genetic variant diminishes the receptor signaling efficacy in brain regions processing the sensory information of pain. J. Biol. Chem. 2009; 284(10): 6530-5.
  20. Mura E., Govony S., Racchi M., Carossa V., Ranzani G.N., Allegri M., van Schaik R.H. Consequences of the 118A>G polymorphism in the OPRM1 gene: translation from bench to bedside? J. Pain. Res. 2013; 6: 331-53.
  21. Zhang W., Chang Y.Z., Kan Q.C. et al. Association of human micro-opioid receptor gene polymorphism A118G with fentanyl analgesia consumption in Chinese gynaecological patients. Anaesthesia. 2010; 65(2): 130-5.
  22. Wu W.D., Wang Y., Fang Y.M., Zhou H.Y. Polymorphism of the micro-opioid receptor gene (OPRM1 118A>G) affects fentanyl-induced analgesia during anesthesia and recovery. Mol. Diagn. Ther. 2009; 13(5): 331-7.
  23. Потапов А.Л., Бояркина А.В. Полиморфизм генов μ1-опиоидного рецептора и катехол-о-метилтрансферазы влияет на предоперационное психологические состояние пациентов и эффективность послеоперационной анальгезии наркотическими анальгетиками. Анестезиология и реаниматология. 2015. 3: 48-51.
  24. Kolesnikov Y., Gabovits B., Levin A., Voiko E., Veske A. Combined catechol-O-methyltransferase and μ-opioid receptor gene polymorphisms affect morphine postoperative analgesia and central side effects. Anesth. Analg. 2011; 112(2): 448-53.
  25. Reyes-Gibby C.C., Shete S, Rakvåg T., Bhat S.V., Skorpen F., Bruera E. et al. Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and COMT gene. Pain. 2007; 130(1-2): 25-30.
  26. Lötsch J., Prüss H., Veh R.W., Doehring A. A KCNJ6 (Kir3.2, GIRK2) gene polymorphism modulates opioid effects on analgesia and addiction but not on pupil size. Pharmacogenet. Genomics. 2010; 20(5): 291-7.
  27. Yuan J.J., Hou J.K., Zhang W., ChangY.Z., Li Z.S., Wang Z.Y. et al. CYP3A4*1G Genetic Polymorphism Influences Metabolism of Fentanyl in Human Liver Microsomes in Chinese Patients. Pharmacology. 2015; 96(1-2): 55-60.
  28. Zhang W., Chang Y.Z., Kan Q.C., Zhang L.R., Li Z.S., Lu H. et al. CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients. Eur. J. Clin. Pharmacol. 2010; 66(1): 61-6.
  29. Takashina Y., Naito T., Mino Y., Yagi T., Ohnishi K., Kawakami J. Impact of CYP3A5 and ABCB1 gene polymorphisms on fentanyl pharmacokinetics and clinical responses in cancer patients undergoing conversion to a transdermal system. Drug Metab. Pharmacokinet. 2012; 27(4): 414-21.
  30. Wandel C., Kim R., Wood M., Wood A. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology. 2002; 96(4): 913-20.
  31. Mahringer A., Fricker G. ABC transporters at the blood-brain barrier. Expert. Opin. Drug Metab. Toxicol. 2016; 12(5): 499-50.
  32. Park H.J., Shinn H.K., Ryu S.H., Lee H.S., Park C.S., Kang J.H. Genetic polymorphisms in the ABCB1 gene and the effects of fentanyl in Koreans. Clin. Pharmacol. Ther. 2007; 81(4): 539-46.
  33. Kesimci E., Engin A.B., Kanbak O., Karahalil B. Association between ABCB1 gene polymorphisms and fentanyl’s adverse effects in Turkish patients undergoing spinal anesthesia. Gene. 2012; 493(2): 273-7.
  34. Ren Z.Y., Xu X.Q., Bao Y.P., He J., Shi L., Deng J.H., Gao X.J. et al. The Impact of Genetic Variation on Sensitivity to Opioid Analgesics in Patients with Postoperative Pain: A Systematic Review and Meta-Analysis. Pain Physician. 2015; 18: 131-52.
  35. Инструкция по медицинскому применению ТТС фентанила (Дюрогезик® Матрикс).
  36. Ripamonti C.I., Bandieri E., Roila F. On behalf of the ESMO Guidelines Working Group. Management of cancer pain: ESMO Clinical Practice Guidelines. Annals of Oncology. 2012; 23(Suppl. 7): vii139-54.
  37. Каприн А.Д., Абузарова Г.Р., Хороненко В.Э., Алексеева Г.С., Костин А.А., Старинский В.В., Алексеев Б.Я. Фармакотерапия хронического болевого синдрома у взрослых пациентов при оказании паллиативной помощи в стационарных и амбулаторно-поликлинических условиях. Методические рекомендации. М.: ФГБУ «МНИОИ им. П.А. Герцена»; 2015.
  38. Skaer T.L. Transdermal opioids for cancer pain. Health and Quality of Life Outcomes. 2006, 4: 24.
  39. Lövborg Holmlund M., Hägg S. Medication errors related to transdermal opioid patches: lessons from a regional incident reporting system. BMC. Pharmacology and Toxicology. 2014; 15: 31.
  40. Lane M.E. The transdermal delivery of fentanyl. Eur. J. Pharm. Biopharm. 2013; 84(3): 449-55.
  41. DurogesicSMAT: Fachinformation. Доступно по ссылке: http://static.janssen-emea.com/sites/default/files/janssen_de/uploads/FI/DUROGESIC_SMAT.pdf (дата обращения: 18.12.2016).
  42. Dowell D., Haegerich T.M., Chou R. CDC Guideline for Prescribing Opioids for Chronic Pain. 2016. J.A.M.A. 2016; 315(15): 1624-45.

Copyright (c) 2017 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies