THE ROLE OF GENES RAD50 AND SMARCA5 IN REGULATION OF SENSITIVITY TO CISPLATIN IN TUMOR CELLS OF OVARIAN, HEAD AND NECK CANCER


Cite item

Full Text

Abstract

Aim of the study. To assess the role of genes RAD50 and SMARCA5 in regulation of sensitivity to cisplatin and other anticancer DNA damaging drugs (5-fluorouracil, olaparib), to assess the role of these genes in the response to the DNA damage in ovarian cancer (OVCAR-8) and head and neck cancer cell lines (SCC61, SCC25). Material and Methods. We used small interfering RNAs (siRNAs) (Qiagen,Germany) to deplete either RAD50 and SMARCA5 or control genes and under basal and DNA damaging drug-treatment conditions, we assessed cell viability with the use of Cell Titer Blue reagent (Promega,USA) with following spectrophotometry. To assess the role of genes in response to DNA damage, analysis of phospho-H2AX focus formation was performed by means of using immunofluorescence microscopy. Results. We demonstrated the role of RAD50 and SMARCA5 in regulation of survival and sensitivity of ovarian cancer (OVCAR-8), head and neck cancer cell lines (SCC61, SCC25) to cisplatin and other DNA damaging drugs (5-fluorouracil, olaparib). Our data suggest the role of SMARCA5 in regulation of baseline histone H2AX protein phosphorylation in the absence of DNA damage. Conclusion. Our findings characterize genes RAD50 and SMARCA5 as promising therapeutic targets and predictive markers for response to cisplatin and other DNA damaging drugs in patients with ovarian cancer and squamous cell carcinoma of head and neck.

About the authors

A. V Gaponova

Kazan Federal University

Email: annagaponova28@gmail.com
младший научный сотрудник кафедры биохимии; 420008, г. Казань, ул. Кремлевская, д. 18 Kazan, 420008, Russian Federation

I. G Serebriiskii

Kazan Federal University

Kazan, 420008, Russian Federation

R. G Kiyamova

Kazan Federal University

Kazan, 420008, Russian Federation

References

  1. Chu G. Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J. Biol. Chem. 1994; 269(2): 787-90.
  2. Perez R.P. Cellular and molecular determinants of cisplatin resistance. Eur. J. Cancer. 1998; 34(10):1535-42.
  3. Johnson S.W., Perez R.P., Godwin A.K., Yeung A.T., Handel L.M., Ozols R.F., Hamilton T.C. Role of platinum-DNA adduct formation and removal in cisplatin resistance in human ovarian cancer cell lines. Biochem. Pharmacol. 1994; 47(4): 689-97.
  4. Johnson S.W., Swiggard P.A., Handel L.M., Brennan J.M., Godwin A.K., Owls R.F. et al. Relationship between platinum-DNA adduct formation and removal and cisplatin cytotoxicity in cisplatin-sensitive and -resistant human ovarian cancer cells. Cancer Res. 1994; 54(22): 5911-6.
  5. Tan D.S., Kaye S.B. Chemotherapy for patients with BRCA1 and BRCA2-mutated ovarian cancer: same or different? Am. Soc. Clin. Oncol. Educ. Book. 2015: 114-21.
  6. Kiyamova R., Kostianets O., Malyuchik S., Filonenko V., Usenko V., Gurtovyy V. et al. Identification of tumor-associated antigens from medullary breast carcinoma by a modified SEREX approach. Mol. Biotechnol. 2010; 46(2): 105-12.
  7. Kostianets О., Shyian M., Demidov S., Antoniuk S., Gout I., Filonenko V., Kiyamova R. Serological analysis of SEREX-defined medullary breasr carcinoma-associated antigens. Cancer Invest. 2012; 30(7): 519-27.
  8. Kostianets O., Antoniuk S., Filonenko V., Kiyamova R. Immunohistochemical analysis of medullary breast carcinoma autoantigens in different histological types of breast carcinomas. Diagn. Pathol. 2012; 7(1):161. doi: 10.1186/1746-1596-7-161.
  9. Bartkova J., Tommiska J., Oplustilova L., Aaltonen K., Tamminen A., Heikkinen T. et al. Aberrations of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer: MRE11 as a candidate familial cancer-predisposing gene. Mol. Oncol. 2008; 2(4): 296-316.
  10. Tommiska J., Seal S., Renwick A., Barfoot R., Baskcomb L., Jayatilake H. et al. Evaluation of RAD50 in familial breast cancer predisposition. Int. J. Cancer. 2006; 118(11): 2911-6.
  11. Abuzeid W.M., Jiang X., Shi G., Wang H., Paulson D., Araki K. et al. Molecular disruption of RAD50 sensitizes human tumor cells to cisplatin-based chemotherapy. J. Clin. Invest. 2009; 119(7): 1974-85.
  12. Flores-Perez A., Rafaelli L.E., Ramírez-Torres N., Aréchaga-Ocampo E., Frías S., Sánchez S. et al. RAD50 targeting impairs DNA damage response and sensitizes human breast cancer cells to cisplatin therapy. Cancer. Biol. Ther. 2014; 15(6): 777-88.
  13. Smeenk G., Wiegant W.W., Marteijn J.A., Luijsterburg M.S., Sroczynski N., Costelloe T. et al. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling. J. Cell. Sci. 2013; 126(4): 889-903.
  14. Xu X., Xie K., Zhang X.Q., Pridgen E.M., Park G.Y., Cui D.S. et al. Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc. Natl. Acad. Sci. USA. 2013; 110(46): 18638-43.
  15. Doles J., Oliver T.G., Cameron E.R., Hsu G., Jacks T., Walker G.C., Hemann M.T. Suppression of Rev3, the catalytic subunit of Pol{zeta}, sensitizes drug-resistant lung tumors to chemotherapy. Proc. Natl. Acad. Sci. U S A. 2010; 107(48): 20786-91.
  16. Huang K.K., Jang K.W., Kim S., Kim H.S., Kim S.M., Kwon H.J. et al. Exome sequencing reveals recurrent REV3L mutations in cisplatin-resistant squamous cell carcinoma of head and neck. Sci. Rep. 2016; 6: 19552.
  17. Sharma A., Singh K., Almasan A. Histone H2AX phosphorylation: a marker for DNA damage. Meth. Mol. Biol. 2012; 920: 613-26.
  18. Turinetto V., Giachino C. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic Acids Res. 2015; 43(5): 2489-98.
  19. Pabla N., Huang S., Mi Q.S., Daniel R., Dong Z. ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J. Biol. Chem. 2008; 283(10): 6572-83.
  20. Jackson S.P. Sensing and repairing DNA double-strand breaks. Carcinogenesis. 2002; 23(5): 687-96.
  21. Paull T.T., Rogakou E.P., Yamazaki V., Kirchgessner C.U., Gellert M., Bonner W.M. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 2000; 10(15): 886-95.
  22. Jin Q., Mao X., Li B., Guan S., Yao F., Jin F. Overexpression of SMARCA5 correlates with cell proliferation and migration in breast cancer. Tumour Biol. 2015; 36(3): 1895-902.
  23. Heikkinen K., Rapakko K., Karppinen S.M., Erkko H., Knuutila S., Lundán T. et al. RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis. 2006; 27(8): 1593-9.
  24. Wyatt M.D., Wilson D.M. Participation of DNA repair in the response to 5-fluorouracil. Cell Mol. Life Sci. 2009; 66(5): 788-99.
  25. Adamsen B.L., Kravik K.L., De Angelis P.M. DNA damage signaling in response to 5-fluorouracil in three colorectal cancer cell lines with different mismatch repair and TP53 status. Int. J. Oncol. 2011; 39(3): 673-82.
  26. Martin L.P., Hamilton T.C., Schilder R.J. Platinum resistance: the role of DNA repair pathways. Clin. Cancer Res. 2008; 14(5): 1291-5.
  27. Meehan R.S., Chen A.P. New treatment option for ovarian cancer: PARP inhibitors. Gynecol. Oncol. Res. Pract. 2016; 3: 3.

Copyright (c) 2017 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies