Mechanisms of RORα-dependent effects of melatonin

Cover Page

Cite item

Full Text

Abstract

The transcription factor RORα has not traditionally been attributed a fundamental role in the development of Th17 cells, but recent studies have shown that it is necessary for the formation of a pathogenic variant of Th17 cells, the so-called Th1-polarized Th17 (Th17.1). Since the transcriptional activity of RORα depends on ligand binding, the search for such ligands is highly relevant, and in this regard, melatonin is of particular interest. The question of the ability of RORα to directly bind melatonin remains open today; data on this problem are extremely contradictory. In 1995, I. Wiesenberg and colleagues identified RORα as a nuclear receptor for melatonin, demonstrating the hormone’s ability to enhance the binding of this factor to DNA and determining the dissociation constant for the interaction of RORα with melatonin using classical Scatchard analysis. In 2011, P.J. Lardone and colleagues “rediscovered” RORα as a receptor for melatonin by demonstrating the coprecipitation of melatonin with RORα. And in 2016, A.J. Slominski and colleagues published a paper that cast doubt on the possibility of melatonin binding to RORα based on molecular modeling of ligand-receptor interactions supported by functional studies. However, a careful analysis of these data indicates the ambiguity of this conclusion, allowing us to speak, rather, of medium or low binding affinity of the hormone to RORα, but not of its absence. This conclusion is also supported by the fact that RORα mediates many of the effects of melatonin, both physiological and pharmacological, including the regulation of circadian rhythms and oxidative metabolism, neuro- and cardioprotection, and control of the immune response. In general, the data available today allow us to consider the transcription factor RORα as a receptor for melatonin with medium affinity, although indirect regulation of this factor by the hormone is not excluded, and RORα-dependent mechanisms should contribute to the cellular response to melatonin, both under physiological conditions and in the case of pharmacological use of the hormone.

About the authors

E. M. Kuklina

Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: ibis_07@mail.ru

PhD, MD (Biology), Leading Research Associate, Laboratory of Immunoregulation

Russian Federation, Perm

References

  1. Fang N., Chunyi H., Wenqi S., Ying X., Yeqi G., Le W., Qing P., Russel J. R., Lifeng L. Identification of a novel melatonin-binding nuclear receptor: Vitamin D receptor. J. Pineal Res., 2018, Vol. 68, no. 1, e12618. doi.org/10.1111/jpi.12618.
  2. Fang Y., Zhang J., Li Y., Guo X., Li J., Zhong R., Zhang X. Melatonin-induced demethylation of antioxidant genes increases antioxidant capacity through RORalpha in cumulus cells of prepubertal lambs. Free Radical Biol. Med., 2019, Vol. 131, pp. 173-183.
  3. García J.A., Volt H., Venegas C., Doerrier C., Escames G., López L.C., Acuña-Castroviejo D. Disruption of the NF-κB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-α and blocks the septic response in mice. FASEB J., 2015, Vol. 29, pp. 3863-3875.
  4. Glebezdina N.S., Nekrasova I.V., Olina A.A., Sadykova G.K., Kuklina E.M. Differentiation of T cells producing interleukin-17 (Th17) against the background of exogenous melatonin during pregnancy. J. Pineal Res., 2023, Vol. 75, e12904. doi: 10.1111/jpi.12904.
  5. Hall J.A., Pokrovskii M., Kroehling L., Kim B.R., Kim S.Y., Wu L., Lee J.Y., Littman D.R. Transcription factor ROR enforces stability of the Th17 cell effector program by binding to a Rorc cis-regulatory element. Immunity, 2022, Vol. 55, no. 11, pp. 2027-2043.
  6. He B., Zhao Y., Xu L., Gao L., Su Y., Lin N., Pu J. The nuclear melatonin receptor RORα is a novel endogenous defender against myocardial ischemia/reperfusion injury. J. Pineal Res., 2016, Vol. 60, pp. 313-326.
  7. Kang J., Chen H., Zhang F., Yan T., Fan W., Jiang L., He H., Huang F. RORα regulates odontoblastic differentiation and mediates the pro-odontogenic effect of melatonin on dental papilla cells. Molecules, 2021, Vol. 26, 1098. doi: 10.3390/molecules26041098.
  8. Kato K., Hirai K., Nishiyama K., Uchikawa O., Fukatsu K., Ohkawa S., Kawamata Y., Hinuma S., Miyamoto M. Neurochemical properties of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist. Neuropharmacology, 2005, Vol. 48, no. 2, pp. 301-310.
  9. Lardone P.J., Guerrero J.M., Fernández-Santos J.M., Rubio A., Martín-Lacave I., Carrillo-Vico A. Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related orphan receptor. J. Pineal Res., 2011, Vol. 51, pp. 454-462.
  10. Sato T.K., Panda S., Miraglia L.J., Reyes T.M., Rudic R.D., McNamara P., Naik K.A., FitzGerald G.A., Kay S.A., Hogenesch J.B. A functional genomics strategy reveals rora as a component of the mammalian circadian clock. Neuron, 2004, Vol. 43, pp. 527-537.
  11. Shah S.A., Khan M., Jo M.H., Jo M.G., Amin F.U., Kim M.O. Melatonin stimulates the SIRT1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain. CNS Neurosci. Ther., 2017, Vol. 23, pp. 33-44.
  12. Slominski A.T., Kim T.K., Takeda Y., Janjetovic Z., Brozyna A.A., Skobowiat C., Wang J., Postlethwaite A., Li W., Tuckey R.C. RORα and RORγ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D. FASEB J., 2014, Vol. 28, pp. 2775-2789.
  13. Wiesenberg I., Missbach M., Kahlen J.P., Schräder M., Carlberg C. Transcriptional activation of the nuclear receptor RZR alpha by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand. Nucleic Acids Res., 1995, Vol. 23, pp. 327-333.
  14. Yang X.O., Pappu B.P., Nurieva R., Akimzhanov A., Kang H.S., Chung Y., Ma L., Shah B., Panopoulos A.D., Schluns K.S., Watowich S.S., Tian Q., Jetten A.M., Dong C. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity, 2008, Vol. 28, pp. 29-39.
  15. Zang M., Zhao Y., Gao L., Zhong F., Qin Z., Tong R., Ai L., Petersen L., Yan Y., Gao Y. The circadian nuclear receptor RORα negatively regulates cerebral ischemia–reperfusion injury and mediates the neuroprotective effects of melatonin. BBA Mol. Basis Dis., 2020, Vol. 1866, 165890. doi: 10.1016/j.bbadis.2020.165890.

Copyright (c) 2024 Kuklina E.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies