Mechanisms of RORα-dependent effects of melatonin

封面

如何引用文章

全文:

详细

The transcription factor RORα has not traditionally been attributed a fundamental role in the development of Th17 cells, but recent studies have shown that it is necessary for the formation of a pathogenic variant of Th17 cells, the so-called Th1-polarized Th17 (Th17.1). Since the transcriptional activity of RORα depends on ligand binding, the search for such ligands is highly relevant, and in this regard, melatonin is of particular interest. The question of the ability of RORα to directly bind melatonin remains open today; data on this problem are extremely contradictory. In 1995, I. Wiesenberg and colleagues identified RORα as a nuclear receptor for melatonin, demonstrating the hormone’s ability to enhance the binding of this factor to DNA and determining the dissociation constant for the interaction of RORα with melatonin using classical Scatchard analysis. In 2011, P.J. Lardone and colleagues “rediscovered” RORα as a receptor for melatonin by demonstrating the coprecipitation of melatonin with RORα. And in 2016, A.J. Slominski and colleagues published a paper that cast doubt on the possibility of melatonin binding to RORα based on molecular modeling of ligand-receptor interactions supported by functional studies. However, a careful analysis of these data indicates the ambiguity of this conclusion, allowing us to speak, rather, of medium or low binding affinity of the hormone to RORα, but not of its absence. This conclusion is also supported by the fact that RORα mediates many of the effects of melatonin, both physiological and pharmacological, including the regulation of circadian rhythms and oxidative metabolism, neuro- and cardioprotection, and control of the immune response. In general, the data available today allow us to consider the transcription factor RORα as a receptor for melatonin with medium affinity, although indirect regulation of this factor by the hormone is not excluded, and RORα-dependent mechanisms should contribute to the cellular response to melatonin, both under physiological conditions and in the case of pharmacological use of the hormone.

作者简介

E. Kuklina

Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: ibis_07@mail.ru

PhD, MD (Biology), Leading Research Associate, Laboratory of Immunoregulation

俄罗斯联邦, Perm

参考

  1. Fang N., Chunyi H., Wenqi S., Ying X., Yeqi G., Le W., Qing P., Russel J. R., Lifeng L. Identification of a novel melatonin-binding nuclear receptor: Vitamin D receptor. J. Pineal Res., 2018, Vol. 68, no. 1, e12618. doi.org/10.1111/jpi.12618.
  2. Fang Y., Zhang J., Li Y., Guo X., Li J., Zhong R., Zhang X. Melatonin-induced demethylation of antioxidant genes increases antioxidant capacity through RORalpha in cumulus cells of prepubertal lambs. Free Radical Biol. Med., 2019, Vol. 131, pp. 173-183.
  3. García J.A., Volt H., Venegas C., Doerrier C., Escames G., López L.C., Acuña-Castroviejo D. Disruption of the NF-κB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-α and blocks the septic response in mice. FASEB J., 2015, Vol. 29, pp. 3863-3875.
  4. Glebezdina N.S., Nekrasova I.V., Olina A.A., Sadykova G.K., Kuklina E.M. Differentiation of T cells producing interleukin-17 (Th17) against the background of exogenous melatonin during pregnancy. J. Pineal Res., 2023, Vol. 75, e12904. doi: 10.1111/jpi.12904.
  5. Hall J.A., Pokrovskii M., Kroehling L., Kim B.R., Kim S.Y., Wu L., Lee J.Y., Littman D.R. Transcription factor ROR enforces stability of the Th17 cell effector program by binding to a Rorc cis-regulatory element. Immunity, 2022, Vol. 55, no. 11, pp. 2027-2043.
  6. He B., Zhao Y., Xu L., Gao L., Su Y., Lin N., Pu J. The nuclear melatonin receptor RORα is a novel endogenous defender against myocardial ischemia/reperfusion injury. J. Pineal Res., 2016, Vol. 60, pp. 313-326.
  7. Kang J., Chen H., Zhang F., Yan T., Fan W., Jiang L., He H., Huang F. RORα regulates odontoblastic differentiation and mediates the pro-odontogenic effect of melatonin on dental papilla cells. Molecules, 2021, Vol. 26, 1098. doi: 10.3390/molecules26041098.
  8. Kato K., Hirai K., Nishiyama K., Uchikawa O., Fukatsu K., Ohkawa S., Kawamata Y., Hinuma S., Miyamoto M. Neurochemical properties of ramelteon (TAK-375), a selective MT1/MT2 receptor agonist. Neuropharmacology, 2005, Vol. 48, no. 2, pp. 301-310.
  9. Lardone P.J., Guerrero J.M., Fernández-Santos J.M., Rubio A., Martín-Lacave I., Carrillo-Vico A. Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related orphan receptor. J. Pineal Res., 2011, Vol. 51, pp. 454-462.
  10. Sato T.K., Panda S., Miraglia L.J., Reyes T.M., Rudic R.D., McNamara P., Naik K.A., FitzGerald G.A., Kay S.A., Hogenesch J.B. A functional genomics strategy reveals rora as a component of the mammalian circadian clock. Neuron, 2004, Vol. 43, pp. 527-537.
  11. Shah S.A., Khan M., Jo M.H., Jo M.G., Amin F.U., Kim M.O. Melatonin stimulates the SIRT1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain. CNS Neurosci. Ther., 2017, Vol. 23, pp. 33-44.
  12. Slominski A.T., Kim T.K., Takeda Y., Janjetovic Z., Brozyna A.A., Skobowiat C., Wang J., Postlethwaite A., Li W., Tuckey R.C. RORα and RORγ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D. FASEB J., 2014, Vol. 28, pp. 2775-2789.
  13. Wiesenberg I., Missbach M., Kahlen J.P., Schräder M., Carlberg C. Transcriptional activation of the nuclear receptor RZR alpha by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand. Nucleic Acids Res., 1995, Vol. 23, pp. 327-333.
  14. Yang X.O., Pappu B.P., Nurieva R., Akimzhanov A., Kang H.S., Chung Y., Ma L., Shah B., Panopoulos A.D., Schluns K.S., Watowich S.S., Tian Q., Jetten A.M., Dong C. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity, 2008, Vol. 28, pp. 29-39.
  15. Zang M., Zhao Y., Gao L., Zhong F., Qin Z., Tong R., Ai L., Petersen L., Yan Y., Gao Y. The circadian nuclear receptor RORα negatively regulates cerebral ischemia–reperfusion injury and mediates the neuroprotective effects of melatonin. BBA Mol. Basis Dis., 2020, Vol. 1866, 165890. doi: 10.1016/j.bbadis.2020.165890.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Куклина Е., 2024

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».