Disturbances in the B-cell component of immune system and associated immune alterations in post-COVID patients

Cover Page

Cite item

Full Text

Abstract

There is only limited data on B-cell response in post-COVID patients despite its importance in studying the post-infection immunity. The present study aimed to investigate the features of the B-cell response in post-COVID patients, focusing on various B cell phenotypes. Along with the standard immunogram, the following cell phenotypes were examined: common B cells (CD45+, CD3-, CD19+); common memory cells (CD45+, CD3-, CD19+, CD27+); common non-memory cells (CD45+, CD3-, CD19+, CD5+); B1 memory cells (CD45+, CD3-, CD19+, CD5+, CD27+); B2 memory cells (CD45+, CD3-, CD19+, CD5-, CD27+); B1 non-memory cells (CD45+, CD3-, CD19+, CD5+, CD27-); and B2 non-memory cells (CD45+, CD3-, CD19+, CD5-, CD27-). The study revealed a sharp increase in B1 memory cells in 15.3% of post-COVID patients with impaired levels of B1 memory cells. This increase was accompanied by elevated levels of total B memory cells, B1 total lymphocytes (mainly, B1 memory cells), total T lymphocytes, and total IgA. By contrast, the patients with impaired B1 memory cells exhibited a sharp decrease in plasma cells, B2 lymphocytes (both memory and non-memory cells), natural killer cells, T regulatory cells, early activation T cells (CD25+), and C3a complement fragment. These findings suggest a unique immune system disorder characterized by dysregulated B lymphocyte switching from IgM to IgG and IgA synthesis, thus resulting in marked decrease in B2 lymphocyte subpopulations. This disorder may be associated with reduced T regulatory lymphocytes and early activation of T lymphocytes responsible for regulating B lymphocyte differentiation. Furthermore, the patients also exhibited reduced hemoglobin and platelet parameters, thus, potentially, contributing to hypoxia and blood clotting abnormalities. Thus, the phenotype identification of these immune system disorders in post-COVID patients requires non-standard approaches to assessing immune status, thus compicating clinical examination, but highlighting the need for immunocorrective therapies. These findings contribute to better understanding of post-COVID immune system disorders and require further investigation into the underlying causal factors.

About the authors

Maria A. Dobrynina

Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences; A. Burnazyan Russian State Research Center – Federal Medical Biophysical Center

Author for correspondence.
Email: mzurochka@mail.ru

PhD (Medicine), Research Associate, Laboratory of Immunopathophysiology, Associate Professor, Department of Therapy of the University of Innovation and Continuing Education

Russian Federation, 106 Pervomaiskaya St. Yekaterinburg 620049; Moscow

Aleksandr V. Zurochka

Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences; South Ural State University (National Research University)

Email: av_zurochka@mail.ru

PhD, MD (Medicine), Honored Worker of Science of the, Professor, Leading Research Associate, Laboratory of Immunopathophysiology, Head, Immunobiotechnology Laboratory of the Russian-Chinese Center

Russian Federation, Yekaterinburg; Chelyabinsk

Mariia V. Komelkova

Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences; South Ural State University (National Research University)

Email: mkomelkova@mail.ru

PhD, MD (Biology), Head, Laboratory of Systemic Pathology and Promising Medicines of Russian-Chinese Center, Professor

Russian Federation, Yekaterinburg; Chelyabinsk

Vladimir A. Zurochka

Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences; South Ural State University (National Research University)

Email: v_zurochka@mail.ru

PhD, MD (Medicine), Senior Research Associate, Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Senior Research Associate, Laboratory of Immunobiotechnology

Russian Federation, Yekaterinburg; Chelyabinsk

Alexey P. Sarapultsev

Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences; South Ural State University (National Research University)

Email: a.sarapultsev@gmail.com

PhD, MD (Biology), Leading Research Associate, Laboratory of Immunopathophysiology, Director, Russian-Chinese Center

Russian Federation, Yekaterinburg; Chelyabinsk

References

  1. Добрынина М.А., Зурочка А.В., Комелькова М.В., Ло Ш. Исследование нарушения натуральных киллеров у пациентов, перенесших Сovid-19 // Российский иммунологический журнал 2022. Т. 25, № 2. C. 161-166. [Dobrynina M.A., Zurochka A.V., Komelkova M.V., Lo Sh. Study of natural killer cell dysfunction in post-Covid-19 patients. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology 2022, Vol. 25, no. 2, pp. 161-166. (In Russ.)]. doi: 10.46235/1028-7221-1132-ION.
  2. Добрынина М.А., Зурочка А.В., Комелькова М.В., Ло Ш., Зурочка В.А., Ху Д., Рябова Л.В., Сарапульцев А.П. Исследование экспрессии CD45+ и CD46+ на субпопуляциях лимфоцитов периферической крови постковидных пациентов // Российский иммунологический журнал, 2022. Т. 25, № 4. C. 431-436. [Dobrynina M.A., Zurochka A.V., Komelkova M.V., Lo Sh., Zurochka V.A., Khu D., Ryabova L.V., Sarapultsev A.P. Study of CD45+ and CD46+ expression on subpopulations of peripheral blood lymphocytes in post-COVID patients. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2022, Vol. 25, no. 4, pp. 431-436. (In Russ.)]. doi: 10.46235/1028-7221-1160-SOC.
  3. Добрынина М.А., Зурочка А.В., Комелькова М.В., Ло Ш., Семенова Д.А. Оценка взаимосвязи нарушения цитотоксических Т-лимфоцитов с другими компартментами иммунной системы у постковидных пациентов // Вестник уральской медицинской академической науки, 2022. Т. 19, № 3. C. 294-303. [Dobrynina M.A., Zurochka A.V., Komelkova M.V., Luo S., Semenova D.A. Evaluation of the relationship between cytotoxic T-lymphocyte disorders and other compartments of the immune system in post-covid patients. Vestnik uralskoy meditsinskoy akademicheskoy nauki = Bulletin of the Ural Medical Academic Science, 2022, Vol. 19, no. 3, pp. 294-303. (In Russ.)]
  4. Зурочка А.В., Хайдуков С.В., Кудрявцев И.В., Черешнев В.А. Проточная цитометрия в биомедицинских исследованиях. Екатеринбург: РИО УрО РАН, 2018. 720 с. [Zurochka A.V., Khaidukov S.V., Kudryavtsev I.V., Chereshnev V.A. Flow cytometry in biomedical research]. Ekaterinburg: RIO, Ural Branch of the Russian Academy of Sciences, 2018. 720 p.
  5. Хайдуков С.В., Байдун Л.А., Зурочка А.В., Тотолян А.А. Стандартизованная технология «Исследование субпопуляционного состава лимфоцитов периферической крови с применением проточных цитофлюориметров-анализаторов» // Российский иммунологический журнал, 2014, Т. 8 (17), № 4. С. 974-992. [Khaydukov S.V., Baidun L.A., Zurochka A.V., Totolyan A.A. Standardized technology “Study of the subpopulation composition of peripheral blood lymphocytes using flow cytofluorometer-analyzers”. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2014, Vol. 8 (17), no. 4, pp. 974-992. (In Russ.)]
  6. Agergaard J., Ullahammer W.M., Gunst J.D., Østergaard L., Schiøttz-Christensen B. Characteristics of a danish post-COVID cohort referred for examination due to persistent symptoms six months after mild acute COVID-19. J. Clin. Med., 2022, Vol. 11, no. 24, 7338. doi: 10.3390/jcm11247338.
  7. Chippa V, Aleem A, Anjum F. Post Acute Coronavirus (COVID-19) Syndrome. 2023 Feb 3. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan.
  8. Dan J.M., Mateus J., Kato Y., Hastie K.M., Yu E.D., Faliti C.E., Grifoni A., Ramirez S.I., Haupt S., Frazier A., Nakao C., Rayaprolu V., Rawlings S.A., Peters B., Krammer F., Simon V., Saphire E.O., Smith D.M., Weiskopf D., Sette A., Crotty S. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 2021, Vol. 371, no. 6529, eabf4063. doi: 10.1126/science.abf4063.
  9. Files J.K., Boppana S., Perez M.D., Sarkar S., Lowman K.E., Qin K., Sterrett S., Carlin E., Bansal A., Sabbaj S., Long D.M., Kutsch O., Kobie J., Goepfert P.A., Erdmann N. Sustained cellular immune dysregulation in individuals recovering from SARS-CoV-2 infection. J. Clin. Invest., 2021, Vol. 131, no. 1, e140491. doi: 10.1172/JCI140491.
  10. Jimeno-Almazán A., Pallarés J.G., Buendía-Romero Á., Martínez-Cava A., Franco-López F., Sánchez-Alcaraz Martínez B.J., Bernal-Morel E., Courel-Ibáñez J. Post-COVID-19 Syndrome and the Potential Benefits of Exercise. Int. J. Environ. Res. Public Health, 2021, Vol. 18, no. 10, 5329. doi: 10.3390/ijerph18105329.
  11. Kadir M., Ahmad T., Bass J. Post-COVID Sequelae: From Lung Disease to Long Disease. Cureus, 2023, Vol. 15, no. 3, e35668. doi: 10.7759/cureus.35668.
  12. Kang C.K., Kim M., Hong J., Kim G., Lee S., Chang E., Choe P.G., Kim N.J., Kim I.S., Seo J.Y., Song D., Lee D.S., Shin H.M., Kim Y.W., Lee C.H., Park W.B., Kim H.R., Oh M.D. Distinct immune response at 1 year post-COVID-19 according to disease severity. Front. Immunol., 2022, Vol. 13, 830433. doi: 10.3389/fimmu.2022.830433.
  13. Laidlaw B.J., Ellebedy A.H. The germinal centre B cell response to SARS-CoV-2. Nat. Rev. Immunol, 2022, Vol. 22, no. 1, pp. 7-18.
  14. Munblit D., Nicholson T., Akrami A., Apfelbacher C., Chen J., de Groote W., Diaz J.V., Gorst S.L., Harman N., Kokorina A., Olliaro P., Parr C., Preller J., Schiess N., Schmitt J., Seylanova N., Simpson F., Tong A., Needham D.M., Williamson P.R.; PC-COS project steering committee. A core outcome set for post-COVID-19 condition in adults for use in clinical practice and research: an international Delphi consensus study. Lancet Respir. Med., 2022, Vol. 10, no. 7, pp. 715-724.
  15. Phetsouphanh C., Darley D.R., Wilson D.B., Howe A., Munier C.M.L., Patel S.K., Juno J.A., Burrell L.M., Kent S.J., Dore G.J., Kelleher A.D., Matthews G.V. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol., 2022, Vol. 23, pp. 210-216.
  16. Proal A.D., VanElzakker M.B. Long COVID or post-acute sequelae of COVID-19 (PASC): An overview of biological factors that may contribute to persistent symptoms. Front. Microbiol., 2021, Vol. 12, 698169. doi: 10.3389/fmicb.2021.698169.
  17. Shuwa H.A., Shaw T.N., Knight S.B., Wemyss K., McClure F.A., Pearmain L., Prise I., Jagger C., Morgan D.J., Khan S., Brand O., Mann E.R., Ustianowski A., Bakerly N.D., Dark P., Brightling C.E., Brij S.; CIRCO; Felton T., Simpson A., Grainger J.R., Hussell T., Konkel J.E., Menon M. Alterations in T and B cell function persist in convalescent COVID-19 patients. Med, 2021, Vol. 2, no. 6, pp. 720-735.e4.
  18. Turner J.S., Day A., Alsoussi W.B., Liu Z., O'Halloran J.A., Presti R.M., Patterson B.K., Whelan S.P.J., Ellebedy A.H., Mudd P.A. SARS-CoV-2 viral RNA shedding for more than 87 days in an individual with an impaired CD8+ T cell response. Front. Immunol., 2021, Vol. 11, 618402. doi: 10.3389/fimmu.2020.618402.
  19. Turner J.S., Kim W., Kalaidina E., Goss C.W., Rauseo A.M., Schmitz A.J., Hansen L., Haile A., Klebert M.K., Pusic I., O’Halloran J.A., Presti R.M., Ellebedy A.H. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature, 2021, Vol. 595, no. 7867, pp. 421-425.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Level of total IgA in post-COVID patients with impaired levels of B1 memory cells

Download (84KB)

Copyright (c) 2023 Dobrynina M.A., Zurochka A.V., Komelkova M.V., Zurochka V.A., Sarapultsev A.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies