Immunity parameters in adults with measles compared with healthy persons

Cover Page

Cite item

Full Text

Abstract

Measles is a highly contagious viral infection transmitted by airborne droplets, characterized by fever, intoxication and specific rashes on the skin and mucous membranes. Despite the availability of highly effective vaccines and many years of efforts by the world medical community with active immunization of the world’s population against this infection under the auspices of WHO, measles still remains a serious problem. The aim of this work was to investigate the effect of measles infection in adults upon the wide range of lymphocyte subsets and blood cytokine profile in comparison with healthy controls.

The venous blood samples from 50 adult measles patients aged 20 to 55 years, were taken 6±1 days after the onset of skin rash, being compared with blood samples from 50 healthy adults of similar age group. The 200 μL plasma aliquotes resulting from spontaneous sedimentation of the formed elements in an Eppendorf tube were taken, frozen at -30 °C and used within 3 months for the cytokine profile assays. 15 cytokines were tested by multiplex technique (MagPix, BioRad, USA). Mononuclear cells were isolated by gradient centrifugation and immunophenotyped using four-color staining by means of equipment and reagents from BD Biosciences (USA).

In the group of measles patients, activation of innate immunity was revealed, i.e., the IL-1, IL-6, IL-23, IL-31 cytokines and TNF, which belong to early pro-inflammatory cytokines, were significantly increased. In measles patients, a significant increase in cytokines was found, suggesting active participation of epithelial cells in immune response to the measles virus. They produce danger signals (IL-25 and IL-33), inducing the development of adaptive immunity, activate their protective abilities via IL-17F production, and are involved in repair under the influence of IL-22. Some cells of adaptive immunity are infected with the measles virus and die, others actively respond to the viral infection and proliferate, thus leading to changing ratio of their subsets. Hence, the patients showed a significant decrease in T lymphocytes due to a decrease in CD4+ cells, an increased percentage of cells in “senescent” and “exhaustion” state, a significant decrease in TEMRO subpopulations, both among CD4+ and CD8+ lymphocytes, and an increase in CD8+TCM. The levels of B cell subpopulations (Bm, B1, Breg) in measles patients did not differ from healthy ones, and the level of plasmablasts was significantly increased. The level of CD4+ lymphocyte subpopulations and production of their cytokine markers varied greatly. In the patient group, a shift in the type of immune response towards Th2 and Th17 was found, activation of Tfh and Treg was detected, and increased expression of HLA-DR and CD38 activation markers was found.

In response to measles infection, there are several independent, multidirectional processes observed in the patients. On the one hand, the measles virus attacks epithelial cells of mucous membranes and skin and immunocompetent cells, exerting a cytopathic effect and leading to lymphopenia and selective decrease in various lymphocyte subsets. On the other hand, the measles virus initiates activation of both innate and adaptive immunity, thus causing production of the corresponding cytokines, expression of activation markers, and an increase in effector cell subsets. Better understanding of the immunopathogenesis of measles infection and associated immunosuppression will help us to improve vaccination outcomes against this infection and prevent measles-related mortality.

About the authors

Anna P. Toptygina

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology; Lomonosov Moscow State University

Email: toptyginaanna@rambler.ru

PhD, MD (Medicine), Leading Research Associate, Head of Laboratory of Cytokines, Professor, Department of Immunology, Faculty of Biology

Russian Federation, 125212, Moscow, Admiral Makarov str., 10; Moscow

Yuri Yu. Andreev

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology

Author for correspondence.
Email: toptyginaanna@rambler.ru

PhD Student, Laboratory of Cytokines

Russian Federation, 125212, Moscow, Admiral Makarov str., 10

References

  1. Малеев В.В., Лазарева Е.Н., Астрина О.С., Алешина Н.И., Цветкова Н.А., Вдовина Е.Т., Наврузова Л.Н. Современные аспекты нарушений сосудисто-тромбоцитарного звена гемостаза у больных корью // Русский медицинский журнал, 2019. Т. 27, № 10. С. 4-7. [Maleev V.V., Lazareva E.N., Astrina O.S., Aleshina N.I., Tsvetkova N.A., Vdovina E.T., Navruzova L.N. Abnormalities of vascular and platlet responses in measles: state-of-the-art. Russkiy meditsinskiy zhurnal = Russian Medical Journal, 2019, Vol. 27, no. 10, pp. 4-7. (In Russ.)]
  2. Топтыгина А.П., Алешкин В.А. Продукция цитокинов у интактных детей и привитых вакциной «Приорикс» в ответ на стимуляцию антигенами вирусов кори и краснухи // Иммунология, 2011. Т. 32, № 4. С. 200-205. [Toptygina A.P., Aleshkin V.A. Production of cytokines in intact children and children vaccinated with Prioirix vaccine in response to stimulation by measles and rubella virus antigens. Immunologiya = Immunologiya, 2011, Vol. 32, no. 4, pp. 200-205. (In Russ.)]
  3. Топтыгина А.П., Семикина Е.Л., Алешкин В.А. Изменение количества Т клеток памяти в ответ на вакцинацию «Приорикс» // Российский иммунологический журнал, 2012. Т. 6 (15), № 3. С. 253-258. [Toptygina A.P., Semikina E.L., Alioshkin V.A. Changing of T-memory cell number after “Priorix” vaccination. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2012, Vol. 6 (15), no. 3, pp. 253-258. (In Russ.)]
  4. Топтыгина А.П., Семикина Е.Л., Алешкин В.А. Регуляция иммунного ответа у детей, привитых против кори, краснухи и эпидемического паротита // Иммунология, 2012. Т. 33, № 4. С. 177-180. [Toptygina A.P., Semikina E.L., Alioshkin V.A. Immune response regulation in children vaccinated with Prioirix. Immunologiya = Immunologiya, 2012, Vol. 33, no. 4, pp. 177-180. (In Russ.)]
  5. Топтыгина А.П., Семикина Е.Л., Алешкин В.А. Экспрессия маркеров активации на лимфоцитах периферической крови детей, привитых и ревакцинированных «Приориксом» // Иммунология, 2016. Т. 37, № 4. С. 215-218. [Toptygina A.P., Semikina E.L., Aleshkin V.A. Markers of activation expression on the blood lymphocytes in children vaccinated with Prioirix. Immunologiya = Immunologiya, 2016, Vol. 37, no. 4, pp. 215-218. (In Russ.)]
  6. Cayrol C., Girard J.P. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc. Natl Acad. Sci. USA, 2009, Vol. 106, pp. 9021-9026.
  7. de Vries R.D., de Swart R.L. Measles immune suppression: Functional impairment or numbers game? PLoS Pathog., 2014, Vol. 10, no. 12, e1004482. doi: 10.1371/journal.ppat.1004482.
  8. de Vries R.D., McQuaid S., van Amerongen G., Yüksel S., Verburgh R.J., Osterhaus A.D., Duprex W.P., de Swart R.L. Measles immune suppression: lessons from the macaque model. PLoS Pathog., 2012, Vol. 8, no. 8, e1002885. doi: 10.1371/journal.ppat.1002885.
  9. Fort M.M., Cheung J., Yen D., Li J., Zurawski S.M., Lo S., Menon S., Clifford T., Hunte B., Lesley R., Muchamuel T., Hurst S.D., Zurawski G., Leach M.W., Gorman D.M., Rennick D.M. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity, 2001, Vol. 15, pp. 985-995.
  10. Gadroen K., Dodd C.N., Masclee G.M.C., de Ridder M.A.J., Weibel D., Mina M.J., Grenfell B.T., Sturkenboom M.C.J.M., van de Vijver D.A.M.C., de Swart R.L. Impact and longevity of measles-associated immune suppression: a matched cohort study using data from the THIN general practice database in the UK. BMJ Open, 2018, Vol. 8, no. 11, e021465. doi: 10.1136/bmjopen-2017-021465.
  11. Griffin D.E. The immune response in measles: virus control, clearance and protective immunity. Viruses, 2016, Vol. 8, pp. 282-289.
  12. Griffin D.E., Ward B.J., Juaregui E., Johnson R.T., Vaisberg A. Immune activation during measles: beta 2-microglobulin in plasma and cerebrospinal fluid in complicated and uncomplicated disease. J. Infect. Dis., 1992, Vol. 166, pp. 1170-1173.
  13. Gourru-Lesimple G., Mathieu C., Thevenet T., Guillaume-Vasselin V., Jegou J.F., Boer C.G., Tomczak K., Bloyet L.-M., Giraud C., Grande S., Goujon C., Cornu C., Horvat B. Measles virus infection of human keratinocytes: Possible link between measles and atopic dermatitis. J. Dermatol. Sci., 2017, Vol. 86, no. 2, pp. 97-105.
  14. Huang Y.H., Tsai K., Ma C., Vallance B.A., Priatel J.J., Tan R. SLAM-SAP signaling promotes differentiation of IL-17-producing T cells and progression of experimental autoimmune encephalomyelitis. J. Immunol., 2014, Vol. 193, pp. 5841-5853.
  15. Humphreys N.E., Xu D., Hepworth M.R., Liew F.Y., Grencis R.K. IL-33, a potent inducer of adaptive immunity to intestinal nematodes. J. Immunol., 2008, Vol. 180, pp. 2443-2449.
  16. Hurst S.D., Muchamuel T., Gorman D.M., Gilbert J.M., Clifford T., Kwan S., Menon S., Seymour B., Jackson C., Kung T.T., Brieland J.K., Zurawski S.M., Chapman R.W., Zurawski G., Coffman R.L. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J. Immunol., 2002, Vol. 169, pp. 443-453.
  17. Komune N., Ichinohe T., Ito M., Yanagi Y. Measles virus V protein inhibits NLRP3 inflammasome-mediated interleukin-1beta secretion. J. Virol., 2011, Vol. 85, pp. 13019-13026.
  18. Laksono B.M., de Vries R.D., Verburgh R.J., Visser E.G., de Jong A., Fraaij P.L.A., Ruijs W.L.M., Nieuwenhuijse D.F., van den Ham H.J., Koopmans M.P.G. Studies into the mechanism of measles-associated immune suppression during a measles outbreak in the Netherlands. Nat. Commun., 2018, Vol. 9, pp. 4944-4954.
  19. Laksono B.M., Fortugno P., Nijmeijer B.M., de Vries R.D., Cordisco S., Kuiken T., Geijtenbeek T.B.H., Duprex W.P., Brancati F., de Swart R.L. Measles skin rash: Infection of lymphoid and myeloid cells in the dermis precedes viral dissemination to the epidermis. PLoS Pathog., 2020, Vol. 16, no. 10, e1008253. doi: 10.1371/journal.ppat.1008253.
  20. Laksono B.M., Grosserichter-Wagener C., de Vries R.D., Langeveld S.A.G., Brem M.D., van Dongen J.J.M., Katsikis P.D., Koopmans M.P.G., van Zelm M.C., de Swart R.L. In vitro measles virus infection of human lymphocyte subsets demonstrates high susceptibility and permissiveness of both naive and memory B-cells. J. Virol., 2018, Vol. 92, e00131-18. doi: 10.1128/JVI.00131-18.
  21. Lin W.-H.W., Nelson A.N., Ryon J.J., Moss W.J., Griffin D.E. Plasma cytokines and chemokines in Zambian children with measles: innate responses and association with HIV-1 coinfection and in-hospital mortality. J. Infect. Dis., 2017, Vol. 215, pp. 830-839.
  22. Matsuzaki G., Umemura M. Interleukin-17 family cytokines in protective immunity against infections: role of hematopoietic cell-derived and non-hematopoietic cell-derived interleukin-17s. Microbiol. Immunol., 2018, Vol. 62, Iss. 1, pp. 1-13.
  23. Mina M.J., Metcalf C.J., de Swart R.L., Osterhaus A.D., Grenfell B.T. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science, 2015, Vol. 348, pp. 694-699.
  24. Moss W.J. Measles. Lancet, 2017, Vol. 390, pp. 2490-2502.
  25. Moss W.J., Ryon J.J., Monze M., Griffin D.E. Differential regulation of interleukin (IL)-4, IL-5, and IL-10 during measles in Zambian children. J. Infect. Dis., 2002, Vol. 186, pp. 879-887.
  26. Muhlebach M.D., Mateo M., Sinn P.L., Prufer S., Uhlig K.M., Leonard V.H., Navaratnarajah C.K., Frenzke M., Wong X.X., Sawatsky B., Ramachandran S., McCray P.B. Jr, Cichutek K., von Messling V., Lopez M., Cattaneo R. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature, 2011, Vol. 480, pp. 530-533.
  27. Nelson A.N., Putnam N., Hauer D., Baxter V.K., Adams R.J., Griffin D.E. Evolution of T cell responses during measles virus infection and RNA clearance. Sci. Rep., 2017, Vol. 7, no. 1, 11474. doi: 10.1038/s41598-017-10965-z.
  28. Sanada S., Hakuno D., Higgins L.J. Schreiter E.R., McKenzie A.N.J., Lee R.T. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest., 2007, Vol. 117, pp. 1538-1549.
  29. Schwartzberg P.L., Mueller K.L., Qi H., Cannons J.L. SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat. Rev. Immunol., 2009, Vol. 9, pp. 39-46.
  30. Wolk K., Witte E., Witte K., Warszawska K., Sabat R. Biology of interleukin-22. Semin. Immunopathol., 2010, Vol. 32, pp. 17-31.
  31. World Health Organization. Worldwide measles deaths from 2016 to 2019. Available at: https://www.who.int/ru/news/item/12-11-2020-worldwide-measles-deaths-climb-50-from-2016-to-2019-claiming-over-207-500-lives-in-2019 (Date of application 11.08.2021).
  32. Yurchenko M., Shlapatska L.M., Romanets O.L., Ganshevskiy D., Kashuba E., Zamoshnikova A., Ushenin Y.V., Snopok B.A., Sidorenko S.P. CD150-mediated Akt signalling pathway in normal and malignant B cells. Exp. Oncol., 2011, Vol. 33, pp. 9-18.
  33. Zilliox M.J., Moss W.J., Griffin D.E. Gene expression changes in peripheral blood mononuclear cells during measles virus infection. Clin. Vaccine Immunol., 2007, Vol. 14, pp. 918-923.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Comparison of small subsets of helpers and cytotoxic T lymphocytes in the blood of healthy and measles patients

Download (364KB)
3. Figure 2. Subsets of naive lymphocytes and memory T cells in measles patients compared with healthy ones

Download (240KB)
4. Figure 3. Comparison of the B cell subsets in the blood of healthy and measles patients

Download (185KB)

Copyright (c) 2022 Toptygina A.P., Andreev Y.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies