Mechanism of Solid Solution Hardening: Quasilocalisation of Dislocation Kinks

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The sensitivity of the mechanical properties of materials to violations of the translational invariance of the crystal lattice makes it possible to manipulate these properties in the desired direction by doping or creating solid solutions. The paper theoretically studies the mechanisms of such manipulation in relation to materials in which the mobility of dislocations is controlled mainly by the potential relief of the crystal lattice – the so-called Peierls relief. Due to the concentration of alloying atoms in dislocation nuclei, which play the role of traps for these atoms, the dynamic properties of dislocations change, which also leads to modification of the macroscopic mechanical properties of the material. The theory of the effect of doping on the kink mechanism of overcoming the Peierls barriers is constructed taking into account the disordered content of solution atoms in dislocation nuclei. Correspondingly, the direct description of the kinetics of elementary processes characteristic of kinks has been replaced by a statistical description. The multidirectional effect of fluctuations in the solutes distribution, which increase the rate of formation of pairs of kinks, but inhibit the propagation of kinks along dislocation lines, is considered. Inhibition of kinks can lead to an anomalous nature of their mobility, so-called quasilocalisation. The conditions for the predominance of the accelerating or inhibiting factor corresponding in macroscopic terms to the hardening or softening of the material are found.

作者简介

B. Petukhov

Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences”

编辑信件的主要联系方式.
Email: petukhov@ns.crys.ras.ru
Russia, 119333, Moscow

参考

  1. Pink E., Arsenault R.J. // Prog. Mater. Sci. 1979. V. 24. P. 1.
  2. Astie P., Peyrade J.P., Groh P. // Scr. Metall. 1982. V. 16. P. 977.
  3. Caillard D. // Acta Mater. 2013. V. 61. P. 2793.
  4. Chomel P., Cottu J.P. // Acta Mater. 1982. V. 30. P. 1481.
  5. Gupta C., Chakravarty // Phys. Stat. Sol. A. 2009. V. 206. P. 685. https://www.doi.org/10.1002/pssa.200824289
  6. Hu Y.-J. Fellinger M.R., Butler B.G., Paramore J.D., Ligda J.P., Chai Ren., Fang Z.Z., Middlemas S.C., Hemker K.J. // Int. J. Refr. Met. Hard Mater. 2018. V. 75. P. 248. https://www.doi.org/10.1016/j.ijrmhm.2018.04.021
  7. Okazaki K. // J. Mater. Sci. 1996. V. 31. P. 1087.
  8. Raffo P.I. // J. Less-Com. Met. 1968. V. 17. P. 133.
  9. Romaner L., Ambrosch-Draxl C. // Phys. Rev. Lett. 2010. V. 104. P. 195503. https://www.doi.org/10.1103/PhysRevLett.104.195503
  10. Zhao Y., Marian J. // Modelling Simul. Mater. Sci. Eng. 2018. V. 26. P. 045002. https://www.doi.org/10.1088/1361-65Xaaaecf
  11. Vaid A., Wei D., Bitzek E., Nasiri S., Zaiser M. // Acta Materialia. 2022 V. 236. P. 118095. https://doi.org/10.1016/j.actamat.2022.118095
  12. Samolyuk G.D., Osetsky Y.N., Stoller R.E. // J. Phys.: Condens. Matter. 2012. V. 25. № 2. P. 025403. https://doi.org/10.1088/0953-8984/25/2/025403
  13. Hachet G., Caillard D., Ventelon L., Clouet E. // Acta Mater. 2022 V. 222. № 1. P. 117440. https://doi.org/10.1016/j.actamat.2021.117440
  14. Barrera O., Bombac D., Chen Y., Daff T.D., Galindo-Nava E., Gong P., Haley D., Horton R., Katzarov I., Kermode J.R., Liverani C., Stopher M., Sweeney F. // J. Mater. Sci. 2018. V. 53. P. 6251. https://doi.org/10.1007/s10853-017-1978-5
  15. Петухов Б.В. // Известия РАН. Серия физическая. 2022. Т. 86. № 10. С. 1513. https://doi.org/10.31857/S0367676522100155
  16. Guyot P., Dorn J.E. // Can. J. Phys. 1967. V. 45. P. 983.
  17. Nadgorny E. // Prog, Mater. Sci. 1988. V. 31. P. 1.
  18. Seeger A. // Mater. Sci. Eng. A. 2004. V. 370. P. 50.
  19. Gong P., Katzarov I.H., Nutter J., Paxton A.T., Rainforth W.M. // Sci. Reps. 2020. V. 10. P. 10209. https://doi.org/10.1038/s41598-020-66965-z
  20. Messerschmidt U. Dislocation Dynamics During Plastic Deformation / Ed. Hull R. et al. Berlin, Heidelberg: Springer Series in Material Science, 2010. 503 p. https://doi.org/10.1007/978-3-642-03177-9
  21. Caillard D., Martin J.L. Thermally Activated Mechanisms in Crystal Plastisity. Amsterdam etc: Pergamon, 2003. 433 p.
  22. Петухов Б.В. Динамика дислокаций в кристаллическом рельефе. Дислокационные кинки и пластичность кристаллических материалов. Saarbrücken: Lambert Academic Publishing, 2016. 385 p.
  23. Koizumi H., Kirchner H.O.K., Suzuki T. // Philos. Mag. A. 1994. V. 69. P. 895.
  24. Ngan A.H.W. // Philos. Mag. A. 1999. V. 79:7. P. 1687. https://www.doi.org/10.1080/01418619908210387
  25. Mori H. // Mater. Trans. 2014. V. 55. № 10. P. 1531.
  26. Xиpт Дж., Лoтe И. Teopия диcлoкaций. M.: Aтoмиздaт, 1972. 598 c.
  27. Katzarov I.H., Drenchev L.B. // Crystals. 2022. № 12. P. 518. https://doi.org/10.3390/cryst12040518
  28. Петухов Б.В. //Физ. мет. и металловед. 1983. Т. 56. № 6. С. 1177.
  29. Wen M., Fukuyama S., Yokogawa K. // Acta Mater. 2003. V. 51. P. 1767.
  30. Wang Y., Wang X., Li Q., Xu B., & Liu W. // Journal of Materials Science. 2019. V. 54. № 15. P. 10728. https://doi.org/10.1007/s10853-019-03564-y
  31. Петухов Б.В. // Поверхность. Рентеген., синхротр. и нейтрон. исслед. 2022. Т. 16. № 1. С. 107. https://doi.org/10.31857/S1028096022010149
  32. Katzarov I.H., Drenchev L.B., Pashov D.L., Zarrouk T.N.A.T., Al-lahham O., Paxton A.T. // Phys. Rev. Mat. 2022. V. 6. P. 063603. https://doi.org/10.1103/PhyRevMaterials.6.063603
  33. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. Москва: Физматлит, 2004. 496 с.
  34. Лифшиц И.М., Гредескул С.А., Пастур Л.А. Введение в теорию неупорядоченныз систем. М.: Наука, 1982. 360 с
  35. Петухов Б.В. // ЖЭТФ. 2010. Т. 137. № 1. С. 48.
  36. Maresca F., Curtin W.A. // Acta Mater. 2020. V. 162. P. 144 https://doi.org/10.1016/j.actamat.2019.10.007
  37. Suzuki H. / Dislocations in solids, V. 4. Ed. Nabarro F.R.N. North Holland, Amsterdam, 1980. P. 191.
  38. Antillon E., Woodward. C., Rao S.I., Akdim B. // Acta Mater. 2021. V. 215. P. 117012.
  39. Петухов Б.В. // ФТТ. 1988. Т. 30. № 10. С. 2893.
  40. Foss S., Korshunov D., Zachary S. An introduction to Heavy-Tailed and Subexponential Distributions / N.Y.: Springer New York, 2011. 123 p. https://doi.org/10.1007/978-1-4419-9473-8
  41. Iunin Yu.L., Nikitenko V.I., Orlov V.I., Petukhov B.V. // Phys. Rev. Lett. 1997. V. 78. № 16. P. 3137. https://doi.org/10.1103/PhysRevLett.78.3137
  42. Bouchaud J.-P., Georges A. // Phys. Rep. 1990. V. 195. P. 127. https://doi.org/10.1016/0370-1573(90)90099-N
  43. Учайкин В.В. // УФН. 2003. Т. 173. № 8. С. 847.
  44. Петухов Б.В. // ФТТ. 1993. Т. 35. № 5. С. 1121.
  45. Петухов Б.В. // ФТТ. 2022. Т. 64. № 12. С. 1972.
  46. Ghafarollahi A., Curtin W. // Acta Mater. 2021. V. 215. № 6. P. 117078. https;//doi.org/j.actamat.2921.117o78
  47. Caillard D. // Acta Mater. 2011. V. 59. P. 4974. https://doi.org/10.1016/j.actamat.2011.04.048
  48. Caillard D. // Acta Mater. 2016. V. 112. P. 273. https://doi.org/10.1016/j.actamat.2016.04.018

补充文件

附件文件
动作
1. JATS XML
2.

下载 (54KB)
3.

下载 (90KB)
4.

下载 (86KB)
5.

下载 (52KB)

版权所有 © Б.В. Петухов, 2023

##common.cookie##