Conceptual Design of a Time-of-Flight Powder Diffractometer for a Compact Neutron Source

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A conceptual design of a powder diffractometer for a compact neutron source DARIA based on a linear proton accelerator is presented. The proposed concept extends the possibilities of optimizing the device performance not only by varying the diffractometer parameters, but also the neutron source parameters, such as the moderator temperature, repetition rate, and duration of neutron pulses. The results of calculating the spectrum of the target assembly for different types of moderators are presented. The efficiency of the neutron source system for increasing the neutron flux on the sample is evaluated in the McStas software package. The calculation results show the principal possibility of implementing the neutron diffraction method under conditions of limited luminosity of the compact neutron source.

作者简介

E. Moskvin

Saint-Petersburg State University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”

编辑信件的主要联系方式.
Email: moskvin_ev@pnpi.nrcki.ru
Russia, 199034, Saint-Petersburg; Russia, 188300, Gatchina

N. Grigoryeva

Saint-Petersburg State University

Email: moskvin_ev@pnpi.nrcki.ru
Russia, 199034, Saint-Petersburg

N. Kovalenko

Saint-Petersburg State University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”

Email: moskvin_ev@pnpi.nrcki.ru
Russia, 199034, Saint-Petersburg; Russia, 188300, Gatchina

S. Grigoriev

Saint-Petersburg State University; Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC “Kurchatov Institute”

Email: moskvin_ev@pnpi.nrcki.ru
Russia, 199034, Saint-Petersburg; Russia, 188300, Gatchina

参考

  1. Silverman I., Arenshtam A., Berkovits D. et al. // AIP Conf. Proceed. 2018. V. 1962. P. 020002. https://doi.org/10.1063/1.5035515
  2. Furusaka M., Sato H., Takashi K., Ohnuma M., Kiyanagi Y. // Phys. Procedia. 2014. V. 60. P. 167. https://doi.org/10.1016/j.phpro.2014.11.024
  3. Beyer R., Birgersson E., Elekes Z., Ferrari A., Grosse E., Hannaske R., Junghans A., Kögler T., Massarczyk R., Matić A. et al. // Nucl. Instrum. Methods Phys. Res. A. 2013. V. 23. P. 151. https://doi.org/10.1016/j.nima.2013.05.010
  4. Kobayashi T., Ikeda S., Otake Y., Ikeda Y., Hayashizaki N. // Nucl. Instrum. Methods Phys. Res. A. 2021. V. 994. P. 65091. https://doi.org/10.1016/j.nima.2021.165091
  5. Baxter D. // The Eur. Phys. J. Plus. 2016. V. 131. P. 83. https://doi.org/10.1140/epjp/i2016-16083-9
  6. Ene D., Borcea C., Flaska M., Kopecky S., Negret A., Mondelaers W., Plompen A.J.M. // Int. Conf. on Nuclear Data for Science and Technology. 2008. V. ND 2007. https://doi.org/10.1051/ndata:07330
  7. Wei J., Chen H.B., Huang W.H., Tang C.X., Xing Q.Z., Loong C.-K., Fu S.N., Tao J.Z., Guan X.L., Shimizu H.M. // Proceed. PAC09, Vancouver, BC, Canada, 2009. https://s3.cern.ch/inspire-prod-files-f/f4fca313b2051-fb1e4e7bf3650e70af1
  8. Ikeda Y., Taketani A., Takamura M., Sunaga H., Kumagai M., Oba Y., Otake Y., Suzuki H. // Nucl. Instrum. Methods Phys. Res. A. 2016. V. 833. P. 61. https://doi.org/10.1016/j.nima.2016.06.127
  9. Iwamoto C., Takamura M., Ueno K., Kataoka M., Kurihara R., Xu P., Otake Y. // ISIJ Int. 2022. V. 62. № 5. P. 1013. https://doi.org/10.2355/isijinternational.ISIJINT-2021-420
  10. Niita K., Sato T., Iwase H., Nose H., Nakashima H., Sihver L. // Rad. Measur. 2006. V. 41. № 9–10. P. 1080. https://doi.org/10.1016/j.radmeas.2006.07.013
  11. Lefmann K., Nielsen N.K. // Neutron News. 1999. V. 10. № 3. P. 20.https://doi.org/10.1080/10448639908233684
  12. Павлов К.А., Коник П.И., Коваленко Н.А., Кулевой Т.В., Серебренников Д.А., Субботина В.В., Павлова А.Е., Григорьев С.В. // Кристаллография. 2022. Т. 67. № 1. С. 5. https://doi.org/10.31857/S002347612201009X
  13. Pavlova A.E., Petrova A.O., Konik P.I., Pavlov K.A., Grigoriev S.V. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2021. V. 15. № 1. P. 70. https://doi.org/10.1134/S1027451021010122
  14. Carpenter J.M. // Nucl. Instrum. Methods. 1967. V. 47. P. 179. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/33373/0000771.pdf?sequence=1
  15. Hannon A.C. // Nucl. Instrum. Methods Phys. Res. A. 2005. V. 551. P. 88. https://doi.org/10.1016/j.nima.2005.07.053
  16. Maier-Leibnitz H., Springer T. // J. Nucl. En. 1963. V. 17. № 4–5. P. 217. https://doi.org/10.1016/0368-3230(63)90022-3

补充文件

附件文件
动作
1. JATS XML
2.

下载 (80KB)
3.

下载 (112KB)
4.

下载 (252KB)
5.

下载 (177KB)
6.

下载 (97KB)

版权所有 © Е.В. Москвин, Н.А. Григорьева, Н.А. Коваленко, С.В. Григорьев, 2023

##common.cookie##