Study of the Structure and Mechanisms of Wear of Solid-Lubricant Coatings of the TiN–Pb System

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Сomposite solid lubricating coatings TiN–Pb with a thickness of ~2 μm were produced by co-sputtering of Ti and Pb cathodes of two separate magnetrons on titanium alloy VT6. The Pb content in the coating averages ~12 at. %. The inner layer is coating characterized by a uniform distribution of Pb, and the upper layer is characterized by the presence of islands with a high content of Pb. The coating structure is globular, predominantly containing nanometer-sized crystallites. The absence of a columnar structure of the coating is associated with a high content of Pb, which is insoluble in the TiN matrix and interrupts the growth of crystallites. X-ray diffraction analysis showed the presence of Pb, PbO, and TiN phases in the coatings. The diffraction lines are broadened, which indicates that the crystallite size is ~10–20 nm in the coating. Tribological tests of the TiN–Pb coating were carried out under conditions of low-amplitude friction – fretting wear in a wide range of loading parameters. In the full slip mode, a friction coefficient of ~0.25 is observed. During the transition from the full slip mode to the reciprocating slip mode, the energy dissipated during friction drops by more than three times, which is also reflected in a sharp decrease in the friction coefficient from 0.25 to 0.05.

Sobre autores

A. Lozovan

Moscow Aviation Institute (National Research University)

Autor responsável pela correspondência
Email: loz-plasma@yandex.ru
Russia, 125993, Moscow

S. Betsofen

Moscow Aviation Institute (National Research University)

Email: maxim.lyakhovetskiy@mai.ru
Russia, 125993, Moscow

S. Savushkina

Moscow Aviation Institute (National Research University)

Autor responsável pela correspondência
Email: sveta_049@mail.ru
Russia, 125993, Moscow

M. Lyakhovetsky

Moscow Aviation Institute (National Research University)

Autor responsável pela correspondência
Email: maxim.lyakhovetskiy@mai.ru
Russia, 125993, Moscow

L. Lesnevsky

Moscow Aviation Institute (National Research University)

Email: maxim.lyakhovetskiy@mai.ru
Russia, 125993, Moscow

I. Nikolaev

Moscow Aviation Institute (National Research University)

Email: maxim.lyakhovetskiy@mai.ru
Russia, 125993, Moscow

Yu. Pavlov

Moscow Aviation Institute (National Research University)

Email: maxim.lyakhovetskiy@mai.ru
Russia, 125993, Moscow

E. Kubatina

Moscow Aviation Institute (National Research University)

Email: maxim.lyakhovetskiy@mai.ru
Russia, 125993, Moscow

L. Agureev

JSC State Research Center “Keldysh Center”

Email: maxim.lyakhovetskiy@mai.ru
Russia, 125438, Moscow

Bibliografia

  1. Патент на изобретение 2 416 675 (РФ) Способ формирования композитных твердосмазочных покрытий на рабочих поверхностях узлов трения / Лесневский Л.Н., Тюрин В.Н., Ушаков А.М. Московский авиационный институт. 2011. 7 с.
  2. Aouadi S.M., Luster B., Kohli P., Muratore C., Voevodin A.A. // Surf. Coat. Technol. 2009. V. 204. № 6. P. 962. https://www.doi.org/10.1016/j.surfcoat.2009.04.010
  3. Aouadi S.M., Gao H., Martini A., Scharf T.W., Muratore C. // Surf. Coat. Technol. 2014. V. 257. P. 266. https://www.doi.org/10.1016/j.surfcoat.2014.05.064
  4. Кондратьев В.А., Лесневский Л.Н., Тюрин В.Н., Ушаков А.М. // Проблемы машиностроения и надежности машин. 2004. № 2. С. 49.
  5. Lesnevskii L.N., Lezhnev L.Yu., Lyakhovetskii M.A. et al. // J. Machinery Manufacture Reliability. 2017. V. 46. P. 25. https://www.doi.org/10.3103/S1052618817010101
  6. Turkin A.A., Pei Y.T., Shaha K.P. et al. // J. Appl. Phys. 2010. V. 108. № 9. P. 094330-1. https://www.doi.org/10.1063/1.3506681
  7. Hasegava H., Kimura A., Suzuki T. // Surf. Coat. Technol. 2000. V. 132. № 1. P. 76. https://www.doi.org/10.1016/S0257-8972(00)00737-4
  8. Yoo Y., Le D.P., Kim J.G. et al. // Thin Solid Films. 2008. V. 516. № 11. P. 3544. https://www.doi.org/10.1016/j.tsf.2007.08.069
  9. Betsofen S.Ya., Plikunov V.V., Petrov L.M., Bannykh I.O. // Aviation Industry. 2007. № 4. P. 9.
  10. Tan S., Zhang X., Wu X., Fang F., Jiang J. // Appl. Surf. Sci. 2011. V. 257. № 6. P. 1850. https://www.doi.org/10.1016/j.apsusc.2010.08.114.
  11. Chang Ch.-L., Lin Ch.-T., Tsai P.-Ch., Ho W.-Y., Wang D.-Y. // Thin Solid Films. 2008. V. 516. № 16. P. 5324. https://www.doi.org/10.1016/j.tsf.2007.07.087.
  12. Discerens M., Patscheider J., Levy F. // Surf. Coat. Technol. 1998. V. 108. P. 241. https://www.doi.org/10.1016/S0257-8972(98)00560-X.
  13. Блинков И.В., Волхонский А.О., Лаптев А.И., Свиридова Т.А., Табачкова Н.Ю., Белов Д.С., Ершова А.В. // Известия вузов. Порошковая металлургия и функциональные покрытия. 2013. № 2. С. 55. https://www.doi.org/10.17073/1997-308X-2013-2-54-59
  14. Yea F., Suna X. // Prog. Nat. Sci.: Mater. Int. 2018. V. 28. № 1. P. 40. https://www.doi.org/10.1016/j.pnsc.2018.01.001.
  15. Семенов А.П., Цыренов Д.Б., Семенова И.А., Смирнягина Н.Н. Синтез нанокристаллических покрытий TiN–Cu на принципе сопряжения процессов вакуумно-дугового испарения Ti и магнетронного распыления Cu в вакуумной установке ВУ-1Б. Издательства БНЦ СО РАН. Сборники, 2018. 134 с.
  16. Lozovan A.A. et al. // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 52. № 39. https://www.doi.org/10.1088/1757-899X/387/1/012048
  17. Лозован А.А., Бецофен С.Я., Ляховецкий М.А., Павлов Ю.С., Грушин И.А., Кубатина Е.П., Николаев И.А. // Известия вузов. Цветная металлургия. 2021. Т. 27. № 4. С. 70. https://www.doi.org/10.17073/0021-3438-2021-4-70-77
  18. Guleryuz C.G., Krzanowski J.E., Veldhuis S.C., Fox-Rabinovich G.S. // Surf. Coat. Technol. 2009. V. 203. P. 3370.
  19. Suciu C.V., Uchida T. // Parallel Grid Cloud Internet Computing. 2010. P. 560. https://www.doi.org/10.1109/3PGCIC.2010.96.
  20. Lesnevskiy L.N., Lyakhovetskiy M.A., Savushkina S.V. // J. Friction Wear. 2016. V. 37. № 3. P. 268. https://www.doi.org/10.3103/S1068366616030107
  21. Fouvry S., Kapsa Ph., Vincent L. // Wear. 1996. V. 200. № 1. P. 186. https://www.doi.org/10.1016/S0043-1648(96)07306-1
  22. Ma L., Eom K., Geringer J., Jun T-S., Kim K. // Coatings. 2019. V. 9. №. 8. P. 501. https://www.doi.org/10.3390/coatings9080501
  23. Fouvry S., Kapsa Ph., Vincent L. // Fretting Fatigue: Current Technol. Practices. ASTM STP 2000. 1367. P. 49. https://www.doi.org/10.1520/STP14721S
  24. Kapsa P., Fouvry S., Vincent L. // Wear Mechanisms Mater. Practice. 2005. P. 317. https://www.doi.org/10.1002/9780470017029.ch13
  25. Holleck H., Schier V. // Surf. Coat. Technol. 1995. V. 76. № 1. P. 328. https://www.doi.org/10.1016/0257-8972(95)02555-3
  26. Liu A., Deng J., Cui H., Chen Y., Zhao J. // Int. J. Refractory Metals Hard Mater. 2012. V. 31. P. 82. https://www.doi.org/10.1016/j.ijrmhm.2011.09.010

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (81KB)
3.

Baixar (544KB)
4.

Baixar (1MB)
5.

Baixar (109KB)
6.

Baixar (1MB)
7.

Baixar (68KB)
8.

Baixar (792KB)
9.

Baixar (1MB)
10.

Baixar (913KB)
11.

Baixar (2MB)
12.

Baixar (566KB)

Declaração de direitos autorais © А.А. Лозован, С.Я. Бецофен, С.В. Савушкина, М.А. Ляховецкий, Л.Н. Лесневский, И.А. Николаев, Ю.С. Павлов, Е.П. Кубатина, Л.Е. Агуреев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies