The Extension of Field of Applications of Atomic-Force Microscope Hybrid Mode of Two-Probes Nano-Manipulator

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The review of extension of fields of applications of hybrid mode of atomic-force microscope. This mode is the main for two-probes AFM-manipulator. Various methods of upgrades of the feed back system of the AFM whose essentially improve the signal-to-noise ratio in topography mapping are presented. Additionally, successful application of wide range of probes the flexible ones such as standard W probes and glass capillaries as well as rigid probes (sapphire probes with probe tips diameters of dozens of microns) are presented as well. We show the examples of wide application of such mode in measurements of conductivity and adhesion forces of the nanowhiskers on the Si substrate. Beside this, the application of hybrid mode in micro- and nanofluidics such as formation of drops of defined volumes, replacement of drops, their devision and merging are presented. The example of different techniques of manipulations are presented. The possibility of nanowhiskers replacement with liquid flow formed by AFM-probe, i.e. avoiding the direct tip-to-nanowhisker contact, are shown.

Негізгі сөздер

Авторлар туралы

A. Zhukov

Institute of Solid State Physics RAS

Хат алмасуға жауапты Автор.
Email: azhukov@issp.ac.ru
Russia, 142432, Chernogolovka

Әдебиет тізімі

  1. Yamahata C. et al. // J. Microelectromech. Syst. 2008. V. 17. P. 623.
  2. Flohr K. et al. // Rev. Sci. Instrum. 2011. V. 82. P. 113705.
  3. Tsunemi E., Kobayashi K., Matsushige K., Yamada H. // Rev. Sci. Instrum. 2011. V. 82. P. 033708. https://www.doi.org/10.1063/1.3534830
  4. Cherepanov V., Zubkov E., Junker H., Korte S., Blab M., Coenen P., Voigtl B. // Rev. Sci. Instrum. 2012. V. 83. P. 033707. https://www.doi.org/10.1063/1.3694990
  5. Unisoku USM-1400-4P SNOM-SPM system (Unisoku), QuadraProbe (RHK Technology), LT NANOPROBE (Scienta Omicron).
  6. Giessibl F.J. // Appl. Phys. Lett. 1998. V. 73. P. 3956. https://doi.org/10.1063/1.122948
  7. Zhukov A.A., Stolyarov V.S., Kononenko O.V. // Rev. Sci. Instrum. 2017. V. 88. P. 063701. https://www.doi.org/10.1063/1.4985006
  8. Fang A., Dujardin E., Ondarçuhu Th. // Nano Lett. 2006. V. 6. P. 2368.
  9. Zhukov A.A. // Instrum. Experimental Tech. 2019. V. 62. P. 416. https://www.doi.org/10.1134/S0020441219030278
  10. O’Connell C.D., Higgins M.J., Marusic D., Moulton S.E., Wallace G.G. // Langmuir. 2014. V. 30. P. 2712. https://www.doi.org/10.1021/la402936z
  11. Hansma P.K., Drake B., Marti O., Gould S.A., Prater C.B. // Science. 1989. V. 243. P. 641. https://www.doi.org/10.1126/science.2464851
  12. Zhou L., Gong Y., Hou J., Baker L.A. // Anal. Chem. 2017. V. 89. P. 13603. https://www.doi.org/10.1021/acs.analchem.7b04139
  13. Rheinlaender J., Geisse N.A., Proksch R., Schäffer T.E. // Langmuir. 2011. V. 27. P. 697. https://www.doi.org/10.1021/la103275y
  14. Gesper A., Hagemann Ph., Happel P. // Nanoscale. 2019. V. 9. P. 14172. https://www.doi.org/10.1039/C7NR04306F
  15. Page A., Kang M., Armitstead A., Perry D., Unwin P.R. // Anal. Chem. 2017. V. 89. P. 3021. https://www.doi.org/10.1021/acs.analchem.6b04629
  16. Waghule T., Singhvi G., Dubey S.K., Pandey M.M., Gupta G., Singh M., Dua K. // Biomed. Pharmacotherapy. 2019. V. 109. P. 1249. https://www.doi.org/10.1016/j.biopha.2018.10.078
  17. Hore M.J.A., Ye X., Ford J., Gao Y., Fei J., Wu Q., Rowan S.J., Composto R.J., Murray Ch.B., Hammouda B. // Nano Lett. 2015. V. 15. P. 1374. https://www.doi.org/10.1021/acs.nanolett.5b03088
  18. De Kretzer D, Dennis P, Hudson B, Leeton J, Lopata A, Outch K, Talbot J, Wood C. // Lancet. 1973. V. 302. P. 728. https://www.doi.org/10.1016/S0140-6736(73)92553-1
  19. Sanchez D., Johnson N., Li Ch., Novak P., Rheinlaender J., Zhang Y., Anand U., Anand P., Gorelik J., Frolenkov G.I., Benham Ch., Lab M., Ostanin V.P., Schäffer T.E., Klenerman D., Korchev Y.E. // Biophys. J. 2008. V. 95. P. 3017. https://www.doi.org/10.1529/biophysj.108.129551
  20. Wei Ch., Bard A.J., Feldberg S.W. // Anal. Chem. 1997. V. 69. P. 4627. https://www.doi.org/10.1021/ac970551g
  21. Chen Ch.-Ch., Derylo M.A., Baker L.A. // Anal. Chem. 2009. V. 81. P. 4742. https://www.doi.org/10.1021/ac900065p
  22. Frederix P.L.T.M., Bosshart P.D., Akiyama T., Chami M., Gullo M.R., Blackstock J.J., Dooleweerdt K., de Rooij N.F., Staufer U., Engel A. // Nanotechnol. 2008. V. 19. P. 384004. https://www.doi.org/10.1088/0957-4484/19/38/384004
  23. Macpherson J.V., Jones C.E., Barker A.L., Unwin P.R. // Anal. Chem. 2002. V. 74. P. 1841. https://www.doi.org/10.1021/ac0157472
  24. Zhukov A.A., Romanova S.G. // Instrum. Experimental Tech. 2022. V. 65. P. 514. https://www.doi.org/10.1134/S002044122204008X

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (333KB)
3.

Жүктеу (739KB)
4.

Жүктеу (715KB)
5.

Жүктеу (76KB)

© А.А. Жуков, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>