Characterization of Prior Austenite of Martensitic and Bainitic Steels Based on Transformation Texture Analysis
- Authors: Zisman A.A1, Zolotorevsky N.Y1, Matvienko A.N1, Petrov S.N1
-
Affiliations:
- Peter the Great St. Petersburg Polytechnic University
- Issue: No 5 (2025)
- Pages: 56-64
- Section: Articles
- URL: https://journals.rcsi.science/1028-0960/article/view/356812
- DOI: https://doi.org/10.7868/S3034573125050073
- ID: 356812
Cite item
Abstract
The crystallographic texture of bainitic and martensitic steels determined at room temperature is related to the texture of the prior austenite owing to the orientation relationship between the parent and daughter phases. This allows, in particular, judging the deformation of austenite and recrystallization. It becomes possible to analyze the effect of hot rolling on the austenite structural state, which precedes quenching. The structures and textures of bainitic and martensitic steels have been analyzed using electron backscatter diffraction. In the case of single-pass rolling, the state of prior austenite can be estimated based on the morphology of austenite grains reconstructed on the basis of the electron diffraction data. In the case of multi-pass hot rolling, which proceeds with a gradual decrease in temperature, such an estimate is difficult due to peculiarities of structure development. At the same time, this can be performed based on of the analysis of crystallographic texture of steel. As a quantitative characteristic of the structural state of austenite, a scalar parameter is proposed that depends on the relative intensity of texture components formed during the phase transformation.
About the authors
A. A Zisman
Peter the Great St. Petersburg Polytechnic University
Email: zolotorevsky@phnf.spbstu.ru
St. Petersburg, Russia
N. Y Zolotorevsky
Peter the Great St. Petersburg Polytechnic University
Author for correspondence.
Email: zolotorevsky@phnf.spbstu.ru
St. Petersburg, Russia
A. N Matvienko
Peter the Great St. Petersburg Polytechnic University
Email: zolotorevsky@phnf.spbstu.ru
St. Petersburg, Russia
S. N Petrov
Peter the Great St. Petersburg Polytechnic University
Email: zolotorevsky@phnf.spbstu.ru
St. Petersburg, Russia
References
- Brown E.L., Deardo A.J. // Metall. Mater. Trans. A. 1981. V. 12. P. 39. https://doi.org/10.1007/BF02648506
- Zhao H., Palmiere E. // Mater. Charact. 2019. V. 158. P. 109990. https://doi.org/10.1016/j.matchar.2019.109990
- Collins J., Taylor M., Scarlett A.L., Palmiere E.J., Pickering E.J. // Mater. Charact. 2024. V. 208. P. 113656. https://doi.org/10.1016/j.matchar.2024.113656
- Ghorabaei A., Nili-Ahmadabad M. // Mater. Sci. Eng. A. 2021. V. 815. P. 141300. https://doi.org/10.1016/j.msea.2021.141300
- Taylor M., Smith A.D., Donoghue J.M., Burnett T.L., Pickering E.J. // Scr. Mater. 2024. V. 242. P. 115924. https://doi.org/10.1016/j.scriptamat.2023.115924
- Miyamoto G., Iwata N., Takayama N., Furuhara T. // Acta Mater. 2010. V. 58. P. 6393. https://doi.org/10.1016/j.actamat.2010.08.001
- Germain L., Gey N., Humbert M. // Scr. Mater. 2019. V. 158. P. 91. https://doi.org/10.1016/j.scriptamat.2018.08.042
- Brust A., Payton E., Hobbs T., Sinha V., Yardley V., Niezgoda S. // Microsc. Microanal. 2021. V. 27. P. 1035. https://doi.org/10.1017/S1431927621012484
- Fernandez-Zelada P., Rossy A.M., Campbell Q., Nycz A., Ledford C., Kirka M.M. // Mater. Charact. 2022. V. 185. P. 111759. https://doi.org/10.1016/j.matchar.2022.111759
- Niessen F., Nyyssönen T., Gazder A., Hielscher R.J. // J. Appl. Crystallogr. 2022. V. 55. P. 180. https://doi.org/10.1107/S1600576721011560
- Hielscher R., Nyyssönen T., Niessen F., Gazder A. // Materialia. 2022. V. 22. P. 101399. https://doi.org/10.1016/j.mta.2022.101399
- Jonas J.J. // Microstructure and Texture in Steels / Eds. A. Haldar et al. New York: Springer, 2009. Ch. 1. P. 3. https://doi.org/10.1007/978-1-84882-454-6
- Winkelmann A., Nolze G., Cios G., Tokarski T., Bala P. // Materials. 2020. V. 13. P. 2816. https://doi.org/10.3390/ma13122816
- Djair R.A.P., Jonas J.J. // Metall. Trans. 1973. V. 4. P. 621. https://doi.org/10.1007/BF02648720
- Petkovic R.A., Luton M.J., Jonas J.J. // Acta Metall. 1979. V. 27. № 10. P. 1633. https://doi.org/10.1016/0001-6160(79)90045-2
- Lin X., Zou X., An D., Krakauer B.W., Zhu M. // Materials. 2021. V. 14. P. 2947. https://doi.org/10.3390/ma14112947
- Xiao X.D., Zhang Q.Z., Li Y.J., Qiu F.M. // Mater. Sci. Technol. 2023. V. 39. P. 509. https://doi.org/10.1080/02670836.2022.2125201
- Qiu C., Xu R., Xu X., Ma S. // Metals. 2024. V. 14. № 8. P. 845. https://doi.org/10.3390/met14080845
- Zisman A.A., Petrov S.N., Zolotorevsky N.Y., Yakovleva E.A. // Mater. Phys. Mechan. 2023. V. 51. № 6. P. 54. https://doi.org/10.18149/MPM.5162023_5
- Zisman A.A., Zolotorevsky N.Y., Petrov S.N. // Steel Res. Int. 2024. V. 95. P. 2300901. https://doi.org/10.1002/srin.202300901
- Kurdjumov G., Sachs Z. // Z. Phys. 1930. V. 64. № 4–6. P. 325. https://doi.org/10.1007/BF01397346
- Greninger A.B., Troiano A.R. // JOM. 1949. V. 1. P. 590. https://doi.org/10.1007/BF03398900
- Takayama N., Miyamoto G., Furuhara T. // Acta Mater. 2012. V. 60. № 5. P. 2387. https://doi.org/10.1016/j.actamat.2011.12.018
- Tamura I., Tsuzaki K., Maki T. // J. Phys. Colloque. 1982. V. 43. № C4. P. 551. https://doi.org/10.1051/jphyscol:1982486
- Miyamoto G., Iwata N., Takayama N., Furuhara T. // Acta Mater. 2012. V. 60. P. 1139. https://doi.org/10.1016/j.actamat.2011.11.018
- Morito S., Saito H., Ogawa T., Furuhara T., Maki T. // ISIJ Int. 2005. V. 45. P. 91. https://doi.org/10.2355/isijinternational.45.91
- Ardehali Barani A., Li F., Romano P., Ponge D., Raabe D. // Mater. Sci. Eng. A. 2007. V. 463. P. 138. https://doi.org/10.1016/j.msea.2006.08.124
- Humphreys F.J., Hatherly M. Recrystallization and Related Annealing Phenomena. Pergamon: Elsevier Science Ltd, 2004. https://doi.org/10.1016/B978-0-08-044164-1.X5000-2
Supplementary files


