On the growth of InGaN nanowires by molecular-beam epitaxy: influence of the III/V flux ratio on the structural and optical properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, we studied the influence of the III/V flux ratio on the structural and optical properties of InGaN nanowires grown by plasma-assisted molecular beam epitaxy. It was found that the formation of InGaN nanowires with a core–shell structure occurs if the III/V flux ratio is about 0.9–1.2 taking into account the In incorporation coefficient. At the same time, an increase in the III/V flux ratio from the intermediate growth regime to metal-rich one leads to a decrease in the In content in nanowires from ~45% to ~35%. This nanowires exhibit photoluminescence at room temperature with a maximum in the range of 600–650 nm. A further increase in the III/V flux ratio to ~1.3, or its decrease to ~0.4 leads to the formation of coalesced nanocolumnar layers with a low In content. The results obtained may be of interest for studying the growth processes of InGaN nanowires and creating RGB light-emitting devices on them.

Full Text

Restricted Access

About the authors

V. O. Gridchin

Saint-Petersburg State University; Alferov University; IAI RAS; Ioffe Institute

Author for correspondence.
Email: gridchinvo@gmail.com
Russian Federation, 199034, Saint-Petersburg; 194021, Saint-Petersburg; 190103, Saint-Petersburg; 194021, Saint-Petersburg

S. D. Komarov

HSE University

Email: gridchinvo@gmail.com
Russian Federation, 190008, Saint-Petersburg

I. P. Soshnikov

Saint-Petersburg State University; IAI RAS; Ioffe Institute

Email: gridchinvo@gmail.com
Russian Federation, 199034, Saint-Petersburg; 190103, Saint-Petersburg; 194021, Saint-Petersburg

I. V. Shtrom

Saint-Petersburg State University; Alferov University; IAI RAS

Email: gridchinvo@gmail.com
Russian Federation, 199034, Saint-Petersburg; 194021, Saint-Petersburg; 190103, Saint-Petersburg

R. R. Reznik

Saint-Petersburg State University

Email: gridchinvo@gmail.com
Russian Federation, 199034, Saint-Petersburg

N. V. Kryzhanovskaya

HSE University

Email: gridchinvo@gmail.com
Russian Federation, 190008, Saint-Petersburg

G. E. Cirlin

Saint-Petersburg State University; Alferov University; IAI RAS; Ioffe Institute

Email: gridchinvo@gmail.com
Russian Federation, 199034, Saint-Petersburg; 194021, Saint-Petersburg; 190103, Saint-Petersburg; 194021, Saint-Petersburg

References

  1. Morkoç H. // Handbook of nitride semiconductors and devices, Materials Properties, Physics and Growth. John Wiley & Sons, 2009. P. 1331.
  2. Karpov S.Y. // MRS Internet J. Nitride Semiconductor Res. 1998. V. 3. № 1. P. 1. https://www.doi.org/10.1557/S1092578300000880
  3. Ho I., Stringfellow G. // Appl. Phys. Lett. 1996. V. 69. № 18. P. 2701. https://www.doi.org/10.1063/1.117683
  4. Grandjean N. Are III-nitride semiconductors also suitable for red emission? // Proc. SPIE OPTO. 2023, San Francisco, California, United States. https://www.doi.org/10.1117/12.2661687
  5. Usman M., Munsif M., Mushtaq U., Anwar A.-R., Muhammad N. // Critical Rev. Solid State Mater. Sci. 2021. V. 46. № 5. P. 450. https://www.doi.org/10.1080/10408436.2020.1819199
  6. Morassi M., Largeau L., Oehler F., Song H.-G., Travers L., Julien F.H., Harmand J.Ch., Cho Y.-H., Glas F., Tchernycheva M., Gogneau N. // Crystal Growth Design. 2018. V. 18. № 4. P. 2545. https://www.doi.org/10.1021/acs.cgd.8b00150
  7. Pan X., Song J., Hong H., Luo M., Nötzel R. // Opt. Exp. 2023. V. 31. № 10. P. 15772. https://www.doi.org/10.1364/OE.486519
  8. Liu X., Sun Yi., Malhotra Y., Pandey A., Wang P., Wu Yu., Sun K., Mi Z. // Photonics Res. 2022. V. 10. № 2. P. 587. https://www.doi.org/10.1364/PRJ.443165
  9. Dubrovskii V.G., Cirlin G.E., Ustinov V.M. // Semiconductors. 2009. V. 43. № 12. P. 1539. https://www.doi.org/10.1134/S106378260912001X
  10. Roche E., André Y., Avit G., Bougerol C., Castelluci D., Réveret F., Gil E., Médard F., Leymarie J., Jean T., Dubrovskii V.G., Trassoudaine A. // Nanotechnology. 2018. V. 29. № 46. P. 465602. https://www.doi.org/10.1088/1361-6528/aaddc1
  11. Kuykendall T., Ulrich P., Yang P. // Nature Materials. 2007. V. 6. № 12. P. 951. https://www.doi.org/10.1038/nmat2037
  12. Gridchin V.O., Kotlyar K.P., Reznik R.R., Dragunova A.S., Kryzhanovskaya N.V., Lendyashova V.V., Kirilenko D.A., Shevchuk D.S., Cirlin G.E. // Nanotechnology. 2021. V. 32. № 33. P. 335604. https://www.doi.org/10.1088/1361-6528/ac0027
  13. Kukushkin S.A., Osipov A.V. // Inorg. Mater. 2021. V. 57. №. 13. P. 1319. https://www.doi.org/10.1134/S0020168521130021
  14. Ivanov S.V., Jmerik V.N., Shubina T.V., Listoshin S.B., Mizerov A.M., Sitnikova A.A., Kim M.-H., Koike M., Kim B.-J., Kop’ev P.S. // J. Crystal Growth. 2007. V. 301. P. 465. https://www.doi.org/10.1016/j.jcrysgro.2006.09.008
  15. Adelmann C., Langer R., Feuillet G., Daudin A. // Appl. Phys. Lett. 1999. V. 75. № 22. P. 3518. https://www.doi.org/10.1063/1.125374
  16. Shugabaev T., Gridchin V.O., Komarov S.D., Kirilen- ko D.A., Kryzhanovskaya N.V., Kotlyar K.P., Reznik R.R., Girshova Y.I., Nikolaev V.V., Kaliteevski M.A., Cir- lin G.E. // Nanomaterials. 2023. V. 13. № 6. P. 1069. https://www.doi.org/10.3390/nano13061069
  17. Gridchin V.O., Reznik R.R., Koltyar K.P., Draguno- va A.S., Kryzhanovskaya N.V., Serov A. Yu., Kukush-kin S.A., Cirlin G.E. // Tech. Phys. Lett. 2021. V. 47. № 21. P. 32. https://www.doi.org/10.21883/TPL.2022.14.52105.18894
  18. oshnikov I.P., Koltyar K.P., Reznik R.R., Gridchin V.O., Lendyashova V.V., Vershinin A.V., Lysak V.V., Kirilen- ko D.A., Bert N.A., Cirlin G.E. // Semiconductors. 2021. V. 55. № 10. P. 795. https://www.doi.org/10.1134/S1063782621090207
  19. Orsal G., Gmili E.L., Fressengeas N., Streque J., Djerboub R., Moudakir T., Sundaram S., Ougazzaden A., Salvestrini J.P. // Opt. Mater. Exp. 2014. Vol. 4. № 5. P. 1030. https://www.doi.org/10.1364/OME.4.001030
  20. Tourbot G., Bougerol C., Grenier A., Den Hertog M., Sam-Giao D., Cooper D., Gilet P., Gayral B., Daudin B. // Nanotechnology. 2011. V. 22. № 7. P. 075601. https://www.doi.org/10.1088/0957-4484/22/7/075601

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Typical SEM images of samples grown at total incident FIII fluxes corresponding to 1.5 (a); 2.0 (b); 5.0 × 10–7 Torr (c) and the obtained RHEED patterns after completion of growth.

Download (173KB)
3. Fig. 2. Normalized PL spectra measured at room temperature from samples grown at a flux of FIII = 5.0 (1); 4.0 (2); 3.0 (3); 2.5 (4); 2.0 (5) and 1.5 × 10–7 Torr (6).

Download (117KB)
4. Fig. 3. Dependence of radiation energy on the In content in InGaN (a) and dependence of the In content in InGaN on the FIII*/FN flux ratio (b).

Download (97KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies