X-ray Structural Analysis of Core—Shell GaPNAs/GaP Nanowires Grown on a Si(111) Substrate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The development of nanowire growth technology based on the GaPNAs solid solution is of interest for modern photonics. A structural analysis of core-shell GaPNAs/GaP nanowires grown on a Si(111) substrate using the self-catalyzed molecular beam epitaxy method has been performed. Transmission electron microscopy has shown the formation of a core and a composite shell in the nanowire body. The twinned sphalerite phase and non-twinned wurtzite phase have been determined. Scanning electron microscopy has revealed the formation of a continuous layer of islands on the sample surface when a nitrogen flow is turned on, which confirms embedding of nitrogen into the grown structures. It was impossible to separate the diffraction reflections of the core and shell of both the sphalerite and wurtzite phases using X-ray diffraction analysis with reciprocal space mapping. The average lattice constant of the sphalerite phase was found to be 5.458 ± 0.005 Å, as well as the average lattice parameters of the wurtzite phase: a = 3.87 ± 0.01 and c = 6.28 ± 0.01 Å. The fact that the phase lattice constants are indistinguishable in the nanowires confirms the possibility of creating high-quality low-defect GaPNAs/GaP nanowires.

About the authors

A. P Malenin

Saint Petersburg Academic University RAS

Email: malenin.andrey3@gmail.com
Saint-Petersburg, Russia

A. K Kaveev

Ioffe Institute RAS

Saint-Petersburg, Russia

V. V Fedorov

Saint Petersburg Academic University RAS; Peter the Great St. Petersburg Polytechnic University

Saint-Petersburg, Russia; Saint-Petersburg, Russia

D. V Minin

Saint Petersburg Academic University RAS

Saint-Petersburg, Russia

I. S Mukhin

Saint Petersburg Academic University RAS; Peter the Great St. Petersburg Polytechnic University

Saint-Petersburg, Russia; Saint-Petersburg, Russia

References

  1. Quan L.N., Kang J., Ning C.-Z., Yang P. // Chem. Rev. 2019. V. 119. № 15. P. 9153. https://doi.org/10.1021/acs.chemrev.9b00240
  2. Dayeh S.A., Soci C., Bao X.-Y., Wang D. // Nano Today. 2009. V. 4. № 4. P. 347. https://doi.org/10.1016/j.nantod.2009.06.010
  3. McIntyre P.C., Fontcuberta i Morral A. // Materials Today Nano. 2023. V. 168. P. 107867. https://doi.org/10.1016/j.mtnano.2019.100058
  4. Kuznetsov A., Roy P., Kondratev V.M., Fedorov V.V., Kotlyar K.P., Reznik R.R., Vorobyev A.A., Mukhin I.S., Cirlin G.E., Bolshakov A.D. // Nanomaterials. 2022. V. 12. № 2. P. 241. https://doi.org/10.3390/nano12020241
  5. Dobrovolsky A., Stehr J.E., Sukrittanon S., Kuang Y., Tu C.W., Chen W.M., Buyanova I.A. // Small. 2015. V. 11. P. 6331. https://doi.org/10.1002/smll.201501538
  6. Koval O.Y., Fedorov V.V., Bolshakov A.D. et al. // Nanomaterials. 2020. V. 10. № 11. P. 2110. https://doi.org/10.3390/nano10112110
  7. Balanta M.A.G., de Oliveira P.B.A., Albalawi H., Galvão Gobato Y., Galeti H.V.A., Rodrigues A.D., Henini M., Almosni S., Robert C., Balocchi A., Léger Y., Carrère H., Bahri M., Patriarche G., Marie X., Cornet C. // J. Alloys Compd. 2020. V. 814. P. 152233. https://doi.org/10.1016/j.jallcom.2019.152233
  8. Kudrawiec R., Luce A.V., Gladysiewicz M., Ting M., Kuang Y.J., Tu C.W., Dubon O.D., Yu K.M., Walukiewicz W. // Phys. Rev. Appl. 2014. V. 1. № 3. P. 034007. https://doi.org/10.1103/PhysRevApplied.1.034007
  9. Jansson M., Chen S.L., La R., Stehr J.E., Tu C.W., Chen W.M., Buyanova I.A. // J. Phys. Chem. C. 2017. V. 121. № 12. P. 7047. https://doi.org/10.1021/acs.jpcc.7b00985
  10. Chen S.L., Chen W.M., Ishikawa F., Buyanova I.A. // Sci. Rep. 2015. V. 5. P. 11653. https://doi.org/10.1038/srep11653
  11. Jansson M., Francaviglia L., La R., Balagula R., Stehr J.E., Tu C.W., Fontcuberta I Morral A., Chen W.M., Buyanova I.A. // Nanotechnology. 2019. V. 30. № 40. P. 405703. https://doi.org/10.1088/1361-6528/ab2cdb
  12. Neplokh V., Fedorov V., Mozharov A. et al. // Nanomaterials. 2021. V. 11. № 10. P. 2549. https://doi.org/10.3390/nano11102549
  13. Prete P., Lovergine N. // Progr. Cryst. Growth Charact. Mater. 2020. V. 66. № 4. P. 100510. https://doi.org/10.1016/j.pcrysgrow.2020.100510
  14. Geisz J., Olson J., McMahon W., Hannappel T., Jones K., Moutinho H., Al-Jassim M. // MRS Online Proceed. Library. 2003. № 799. P. 36. https://doi.org/10.1557/PROC-799-Z1.10
  15. Fedorov V.V., Dvoretckaia L.N., Mozharov A.M., Fedina S.V., Kirilenko D.A., Berezovskaya T.N., Faleev N.N., Yunin P.A., Drozdov M.N., Mukhin I.S. // Mater. Sci. Semicond. Proc. 2023. V. 168. P. 107867. https://doi.org/10.1016/j.mssp.2023.107867
  16. Ishizaka A., Shiraki Y. // 1986. J. Electrochem. Soc. V. 133. № 4. P. 666. https://doi.org/10.1149/1.2108651
  17. Matteini F., Tutuncuoglu G., Potts H., Jabeen F. Fontcuberta i Morral A. // Cryst. Growth Design. 2015. V. 15. № 7. P. 3105. https://doi.org/10.1021/acs.cgd.5b00374
  18. Madsen M., Aagesen M., Krogstrup P., Sorensen C., Nygard J. // Nanoscale Res. Lett. 2011. V. 6. № 1. P. 516. https://doi.org/10.1186/1556-276X-6-516
  19. Koval O.Y., Fedorov V.V., Bolshakov A.D. et al. // Nanomaterials. 2021. V. 11. № 4. P. 960. https://doi.org/10.3390/nano11040960
  20. Lazarev S., Goransson D.J.O., Borgstrom M., Messing M.E., Xu H.Q., Dzhigaev D., Yefanov O.M., Bauer S., Baumbach T., Feidenhans’I R., Samuelson L., Vartanyants I.A. // Nanotechnology. 2019. V. 30. № 50. P. 505703. https://doi.org/10.1088/1361-6528/ab40f1
  21. CRC Handbook of Chemistry and Physics: A Ready- Reference of Chemical and Physical Data / Ed. Lide R.D. Boca Raton: CRC Press LLC, 2004. 2712 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).