Kinetics of Changes in Optical Properties upon Electron Irradiation of CaSiO3 Powder Modified with CeO2 Nanoparticles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We studied the kinetics of changes in the diffuse reflectance spectra and the integral absorption coefficient of solar radiation of the original CaSiO3 powder with micron-sized grains and modified with CeO2 nanoparticles at their optimal concentration of 3 wt% under electron irradiation (energy Е = 30 keV, fluence Φ = (1 - 7)×1016 cm-2) and the possibility of recording these properties in a vacuum at the irradiation site (in situ). Modification was found to lead to an increase in radiation resistance from 2.39 to 2.89 times depending on the electron fluence. The modification efficiency increases with increasing electron fluence during irradiation. The obtained results can be used to develop new radiation-resistant thermal control coatings of the "optical solar reflectors" class for spacecraft.

About the authors

M. M Mikhailov

Tomsk State University of Control Systems and Radioelectronics

Email: membrana2010@mail.ru
Tomsk, Russia

D. S Fedosov

Tomsk State University of Control Systems and Radioelectronics

Email: dmitrii.s.fedosov@tusur.ru
Tomsk, Russia

A. N Lapin

Tomsk State University of Control Systems and Radioelectronics

Tomsk, Russia

S. A Yuryev

Tomsk State University of Control Systems and Radioelectronics

Tomsk, Russia

V. A Goronchko

Tomsk State University of Control Systems and Radioelectronics

Tomsk, Russia

References

  1. Leontiadis K., Achilias D.S., Tsivintzelis I. // Polymers. 2023. V. 15. № 14. Р. 2986. https://doi.org/10.3390/polym15142986
  2. Srikanth S., Yamuna Devi S., Jagadish Dr R.L. // Int. J. Sci. Res. Eng. Manag. 2022. V. 06. Iss. 01. P. 11578. https://doi.org/10.55041/IJSREM11578
  3. Miu D.-M., Jinga S.I., Voicu G., Iordache F. // J. Inorg. Organomet. Polym. 2021. V. 31. № 4. P. 1601. https://doi.org/10.1007/s10904-020-01811-3
  4. Shan Z., Wu J., He P., Zhao Y., Wei K., Ma W. // Sep. Purif. Rev. 2023. P. 1. https://doi.org/10.1080/15422119.2025.246280
  5. Lotfollahi S., Jaidari A., Bakhtiari P., Hosseini M., Ghorbani M. // Int. J. Concr. Struct. Mater. 2023. V. 17. № 1. P. 33. https://doi.org/10.1186/s40069-023-00595-3
  6. Chatterjee A., Khobragade P., Mishra S., Naik J. // Particuology. 2017. V. 30. P. 118. https://doi.org/10.1016/j.partic.2016.04.002
  7. Popov R.Y., Samsonova A.S., Dyatlova E.M., Bogdan E.O., Sergievich O.A., Reven’ko O.M. // Refract. Ind. Ceram. 2023. V. 63. № 6. P. 669. https://doi.org/10.1007/s11148-023-00789-y
  8. Bouatrous M., Bouzerara F., Bhakta A. K., Delobel F., Delhalle J., Mekhalif Z. // Ceramics International. 2020. V. 46. №. 8. P. 12618–12625. https://doi.org/10.1016/j.ceramint.2020.02.026
  9. Khater G. A., Nabawy B. S., El-Kheshen A. A., Abdel-Baki M., Farag M. M., Abd Elsatar A. G. // Construction and Building Materials. 2021. V. 310. P. 125214. https://doi.org/10.1016/j.conbuildmat.2021.125214
  10. Chen W., Liang Y., Hou X., Zhang J., Ding H., Sun S., Cao H. // Materials. 2018. V. 11. № 4. P. 593. https://doi.org/10.3390/ma11040593
  11. Somtürk S.M., Emek I.Y., Senler S., Eren M., Kurt S.Z., Orbay M. // Prog. Org. Coat. 2016. V. 93. P. 34. https://doi.org/10.1016/j.porgcoat.2015.12.014
  12. Wang X., Zhang W., Yan Y., Wang J., Wang X. // Trans. Tianjin Univ. 2019. V. 25. № 3. P. 293. https://doi.org/10.1007/s12209-018-0179-x
  13. Mikhailov M.M., Lapin A.N., Yuryev S.A., Goronchko V.A. // J. Mater. Sci. 2024. V. 59. № 6. P. 2273. https://doi.org/10.1007/s10853-024-09346-5
  14. Mikhailov M.M., Neshchimenko V.V., Li C. // Dyes and Pigments. 2016. V. 131. P. 256. https://doi.org/10.1016/j.dyepig.2016.04.012
  15. Gubicza J. Defect Structure and Properties of Nanomaterials. Cambridge: Woodhead Publishing, 2017. 373 р.
  16. Gubicza J. Defect Structure in Nanomaterials. Elsevier, 2012. 388 р.
  17. Mikhailov M.M., Yuryev S.A., Goronchko V.A., Lapin A.N., Fedosov D.S. // Mater. Sci. Eng. B. 2024. V. 308. P. 117555. https://doi.org/10.1016/j.mseb.2024.117555
  18. ASTM E490-22 Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables. 2022.
  19. ASTM E903-20 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. 2020.
  20. Kumari K., Aljawfi R.N., Chawla A.K., Kumar R., Alvi P.A., Alshoaibi A., Vij A., Ahmed F., Abu-Samak M., Kumar S. // Ceram. Int. 2019. V. 46. № 6. P. 7482. https://doi.org/10.1016/j.ceramint.2019.11.246
  21. Jiang N., Denlinger J.D., Spence J.C.H. // J. Phys.: Condens. Matter. 2003. V. 15. № 32. P. 5523. https://doi.org/10.1088/0953-8984/15/32/312

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).