Electronic Structure and Substructure of Epitaxial Tin Nanolayers on Silicon According to Synchrotron Studies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The specificity of the local atomic surrounding, the physicochemical state, and the electronic structure of five tin monolayers on a thin buffer layer of silicon formed epitaxially, and their transformation as a result of thermal annealing are studied in situ in the presented work. Using radiation from three synchrotron sources high-resolution surface-sensitive experimental methods, X-ray absorption near edge structure spectroscopy and X-ray photoelectron spectroscopy, were used as well as computer modeling. The possibility of oxygen atoms diffusion from tin to a buffer layer of silicon during storage of structures in laboratory conditions is shown. It is shown that during the formation of Sn/Si epitaxial nanolayers there are no interatomic interactions at the heterogeneous boundaries of the structure up to the possible formation of a tin-silicon solid solution and as a result no noticeable distortions of the electronic spectrum. However, high-temperature ultrahigh vacuum annealing causes a phase rearrangement of the surface layers of such a structure accompanied by the redistribution of oxygen atoms from tin atoms to silicon of the epitaxial buffer with the formation of the thin layer of SiO2. Within the thin tin-silicon transition layer of the studied structures and along its boundaries a complex bonds can be formed between tin, oxygen, and carbon atoms.

About the authors

N. I. Boikov

Voronezh State University

Voronezh, Russia

O. A. Chuvenkova

Voronezh State University

Voronezh, Russia

E. V. Parinova

Voronezh State University

Voronezh, Russia

M. D. Manyakin

Voronezh State University

Voronezh, Russia

S. I. Kurganskii

Voronezh State University

Voronezh, Russia

A. A. Makarova

Free University of Berlin

Berlin, Germany

D. A. Smirnov

Dresden University of Technology

Dresden, Germany

R. G. Chumakov

National Research Center “Kurchatov Institute”

Moscow, Russia

A. M. Lebedev

National Research Center “Kurchatov Institute”

Moscow, Russia

K. A. Fateev

Voronezh State University

Voronezh, Russia

S. S. Titova

Voronezh State University

Voronezh, Russia

S. Yu. Turishchev

Voronezh State University

Email: tsu@phys.vsu.ru
Voronezh, Russia

References

  1. Singh M., Ng A., Ren Z., Ren Zh., Hu H., Lin H.-Ch., Chu Ch.-W., Li G. // Nano Energy. 2019. V. 60. P. 275. https://www.doi.org/10.1016/j.nanoen.2019.03.044
  2. Matysiak W. Tański T., Smok W. Polishchuk O.// Sci. Rep. 2020. V. 10. P. 14802. https://www.doi.org/10.1038/s41598-020-71383-2
  3. Ahmaruzzaman Md., Mohanta D., Nath A. // Sci. Rep. 2019. V. 9. P. 12935. https://www.doi.org/10.1038/s41598-019-49181-2
  4. Wang H., Rogach A.L. // Chem.Materials. 2013. V. 26. № 1. P. 123. https://www.doi.org/10.1021/cm4018248
  5. Shaposhnik A.V., ShaposhnikS D.A.. Turishchev S. Yu., Chuvenkova O.A., Ryabtsev S.V., Vasiliev A.A., Vilanova X., Hernandez-Ramirez F., Morante J.R. // Beilstein Journal of Nanotechnology. 2019. V. 10. P. 1380. https://www.doi.org/10.3762/bjnano.10.136
  6. Domashevskaya E.P., Ryabtsev S.V., Yurakov Yu.A., Chuvenkova O.A., Kashkarov V.M., Turishchev S.Yu., Kushev S.B., Lukin A.N. // Thin Solid Films. 2007. V. 515. P. 6350. https://www.doi.org/10.1016/j.tsf.2006.11.092
  7. He Jr.H., Wu T.H., Hsin Ch.L., Li K.M., Chen L.J., Chueh Yu.L., Chou L.J., Wang Zh.L. // Small. 2006. V. 2. № 1. P. 116. https://www.doi.org/10.1002/smll.200500210
  8. Aste T., Beruto D., Botter R., Ciccarelli C., Giordani M., Pozzolini P. // Sensors and Actuators B. 1994. V. 18–19. P. 637. https://www.doi.org/10.1016/0925-4005(93)01218-S
  9. Yoo K.S., Cho N.W., Song H.S., Jung H.J. // Sensors and Actuators B. 1995.V. 24–25. P. 474. https://www.doi.org/10.1016/0925-4005(95)85101-1
  10. Jang Y., Lee H., Char K. // AIP Adv. 2020. V. 10. P. 035011. https://www.doi.org/10.1063/1.5143468
  11. Domashevskaya E.P., Chuvenkova O.A., Ryabtsev S.V., Yurakov Yu.A., Kashkarov V.M., Shchukarev A.V., Turishchev S.Yu. // Thin Solid Films. 2013. V. 537. P. 137. https://www.doi.org/10.1016/j.tsf.2013.03.051)
  12. Pianaro S.A., Bueno P.R., Longo E., Varela J.A. // Ceramics International. 1999. V. 25. № 1. P. 1. https://www.doi.org/10.1016/S0272-8842(97)00076-X
  13. Pan X., Zheng J.G. // Mater. Res. Soc. Proc. 1997. V. 472. P. 472. https://www.doi.org/10.1557/PROC-472-87
  14. Chuvenkova O.A., Domashevskaya E.P., Ryabtsev S.V., Yurakov Yu.A., Popov A.E., Koyuda D.A., Nesterov D.N., Spirin D.E., Ovsyannikov R.Yu., Turishchev S.Yu. // Phys. Solid State. 2015. V. 57. № 1. P. 153. https://www.doi.org/10.1134/S1063783415010072
  15. Das S., Jayaraman V. // Prog. Mater. Sci. 2014. V. 66. P. 112. https://www.doi.org/10.1016/j.pmatsci.2014.06.003
  16. Kwoka M., Ottaviano L., Passacantando M., Santucci S., Czempik G., Szuber J. // Thin Solid Films. 2005. V. 490. № 1. P. 36. https://www.doi.org/10.1016/j.tsf.2005.04.014
  17. Turishchev S., Schleusener A., Chuvenkova O., Parinova E., Liu P., Manyakin M., Kurganskii S., Sivakov V. // Small. 2023. V. 19. P. 2206322. https://www.doi.org/10.1002/smll.202206322
  18. Khan A.F., Mehmood M., Rana A.M., Bhatti M.T. // Appl. Surf. Sci. 2009. V. 255. № 20. P. 8562. https://www.doi.org/10.1016/j.apsusc.2009.06.020
  19. Liu L., Ma S., Wu H., Zhu B., Yang H., Tang J., Zhao X. // Mater. Lett. 2015. V. 149. P. 43. https://www.doi.org/10.1016/j.matlet.2015.02.093
  20. Arthur J.R. // Surface Science. 2002. V. 500. № 1–3. P. 189. https://www.doi.org/10.1016/S0039-6028(01)01525-4
  21. Wang T., Prakash A., Warner E., Gladfelter W.L., Jalan B. // J. Vacuum Sci. Technol. A. 2015.V. 33. № 2. P. 020606. https://www.doi.org/10.1116/1.4913294
  22. Rosental A., Tarre A., Gerst A., Kasikov A., Lu J., Ottosson M., Uustare T. // IEEE Sensors Journal. 2013. V. 13. № 5. P. 1648. https://www.doi.org/10.1109/JSEN.2013.2238227
  23. Shiryaev S.Yu., Hansen J.L., Kringhoj P., Larsen A.N. // Appl. Phys. Lett. 1995. V. 67. № 16. P. 2287. https://www.doi.org/10.1063/1.115128
  24. Min K.S., Atwater H.A. // Appl. Phys. Lett. 1998. V. 72. № 15. P. 1884. https://www.doi.org/10.1063/1.121215
  25. Lieten R.R., Seo J.W., Decoster S., Vantomme A., Peters S., Bustillo K.C., Haller E.E., Menghini M., Locquet J.-P. // Appl. Phys. Lett. 2013. V. 102. № 5. P. 052106. https://www.doi.org/10.1063/1.4790302
  26. Demeulemeester J., Schrauwen A., Nakatsuka O., Zaima S., Adachi M., Shimura Y., Comrie C. M., Fleischmann C., Detavernier C., Temst K., Vantomme A. // Appl. Phys. Lett. 2011. V. 99. № 21. P. 211905. https://www.doi.org/10.1063/1.3662925
  27. Chizmeshya A.V.G., Bauer M.R., Kouvetakis J. // Chem. Mater. 2003. V. 15. № 13. P. 2511. https://www.doi.org/10.1021/cm0300011
  28. Stohr J. NEXAFS spectroscopy. Berlin: Springer. 1996. 403 p.
  29. Hufner S. Very High Resolution Photoelectron Spectroscopy, Lect. Notes Phys. Berlin: Springer. 2007. 410 p.
  30. Brundle C. R., Conti G., Mack P. // Journal of Electron Spectroscopy and Related Phenomena. 2010. V. 178–179. P. 433. https://www.doi.org/10.1016/j.elspec.2010.03.008
  31. Zhang P., Kim P.S., Sham T.K. // Journal of Electron Spectroscopy and Related Phenomena. 2001. V. 119. № 2–3. P. 229. https://www.doi.org/10.1016/S0368-2048(01)00297-3
  32. Turishchev S.Yu., Parinova E.V., Pisliaruk A.K., Koyuda D.A., Yermukhamed D., Ming T., Ovsyannikov R., Smirnov D., Makarova A., Sivakov V. // Sci. Rep. 2019. V. 9. P. 8066. https://www.doi.org/10.1038/s41598-019-44555-y
  33. Domashevskaya E.P., Terekhov V.A., Parinova E.V., Sinelnikov A.A., Kharin A.N., Prizhimov A.S., Turishchev S.Yu. // Mater. Sci. Engineering B. 2020. V. 259. P. 114575. https://www.doi.org/10.1016/j.mseb.2020.114575
  34. Ming T., Turishchev S., Schleusener A., Parinova E., Koyuda D., Chuvenkova O., Schulz M., Dietzek B., Sivakov V. // Small. 2021. V. 17. P. 2007650. https://www.doi.org/10.1002/smll.202007650
  35. Kucheyev S., Baumann T.F., Sterne P.A., Wang Y.M., van Buuren T., Hamza A.V., Terminello L.J., Willey T.M. // Phys. Rev. B. 2005. V. 72. № 3. P. 035404. https://www.doi.org/10.1103/PhysRevB.72.035404
  36. Kwoka M., Ottaviano L., Passacantando M., Santucci S., Szuber J. // Appl. Surf. Sci. 2006. V. 252. № 21. P. 7730. https://www.doi.org/10.1016/j.apsusc.2006.03.065
  37. Turishchev S.Yu., Chuvenkova O.A., Parinova E.V., Koyuda D.A., Chumakov R.G., Presselt M., Schleusener A., Sivakov V. // Results in Physics. 2018. V. 11. P. 507. https://www.doi.org/10.1016/j.rinp.2018.09.046
  38. Manyakin M.D., Kurganskii S.I., Dubrovskii O.I., Chuvenkova O.A., Domashevskaya E.P., Ryabtsev S.V., Ovsyannikov R., Parinova E.V., Sivakov V., Turishchev S.Yu. // Materials Science in Semiconductor Processing. 2019. V. 99. P. 28. https://www.doi.org/10.1016/j.mssp.2019.04.006
  39. Domashevskaya E.P., Yurakov Yu.A., Ryabtsev S.V., Chuvenkova O.A., Kashkarov V.M., Turishchev S Yu. // Journal of Electron Spectroscopy and Related Phenomena. 2007. V. 156– 158. P. 340. https://www.doi.org/10.1016/j.elspec.2006.11.042
  40. Tonkikh A.A., Zakharov N.D., Eisenschmidt C., Leipner H.S., Werner P. // Journal of Crystal Growth. 2014. V. 392. P. 49. https://www.doi.org/10.1016/j.jcrysgro.2014.01.047
  41. Wallace D.J., Rogers G.C., Crossley Sh.L. // Nucl. Instrum. Methods Phys. Res. A. 1994. V. 347. P. 615. https://www.doi.org/10.1016/0168-9002(94)91959-3
  42. Fedoseenko S.I., Iossifov I.E., Gorovikov S.A., Schmidt J.-S., Follath R., Molodtsov S.L., Adamchuk V.K., Kaindl G. // Nucl. Instrum. Methods Phys. Res. A. 2001. V. 470. P. 84. https://www.doi.org/10.1016/S0168-9002(01)01032-4
  43. Lebedev A.M., Menshikov K.A., Nazin V.G., Stankevich V.G., Tsetlin M.B., Chumakov R.G. // J. Surf. Invest.: X-ray, Synchrotron Neutron Techs. 2021. V. 15. № 5. P. 1039. https://www.doi.org/10.1134/S1027451021050335
  44. Kasrai M., Lennard W. N., Brunner R. W., Bancroft G.M., Bardwell J.A., Tan K.H. // Appl. Surf. Sci. 1996. V. 99. P. 303. https://www.doi.org/10.1016/0169-4332(96)00454-0
  45. Erbil A., Cargill G.S., Frahm R., Boehme R.F. // Phys. Rev. B. 1988. V. 37. P. 2450. https://www.doi.org/10.1103/PhysRevB.37.2450
  46. Crist B.V. XPS International Inc. 1999. V.1. www. xpsdata.com
  47. Brown F.C., Rustgi O.P. // Phys. Rev. Lett. 1972. V. 28. № 8. P. 497. https://www.doi.org/10.1103/PhysRevLett.28.497
  48. Barranco A., Yubero F., Espinos J. P., Groening P., González-Elipe A.R. // J. Appl. Phys. 2005. V. 97. № 11. P. 11314. https://www.doi.org/10.1063/1.1927278
  49. Turishchev S.Yu., Terekhov V.A., Kashkarov V.M., Domashevskaya E.P., Molodtsov S.L., Vyalykh D.V. // Journal of Electron Spectroscopy and Related Phenomena. 2007. V. 156–158. P. 445. https://www.doi.org/10.1016/j.elspec.2006.11.037
  50. Terekhov V.A., Turishchev S.Yu., Kashkarov V.M., Domashevskaya E.P., Mikhailov A.N., Tetel’baum D.I. // Physica E: Low-dimensional Systems and Nanostructures. 2007. V. 38. P. 16. https://www.doi.org/10.1016/j.physe.2006.12.030
  51. Dien L., Bancroft G.M., Kasrai M., Fleet M.E., Secco R.A., Feng X.H., Tan K.H., Yang B.X. // American Mineralogist. 1994. V. 79. № 7–8. P. 622.
  52. Domashevskaya E.P., Terekhov V.A., Kashkarov V.M., Manukovskii E.Yu., Turishchev S.Yu., Molodtsov S.L., Vyalykh D.V., Khokhlov A.F., Mashin A.I., Shengurov V.G., Svetlov S.P., Chalkov V.Yu. // Phys. Solid State. 2004. V. 46. № 2. P. 345. https://www.doi.org/10.1134/1.1649435
  53. Manyakin M.D., Kurganskii S.I., Dubrovskii O.I., Chuvenkova O.A., Domashevskaya E.P., Ryabtsev S.V., Ovsyannikov R., Turishchev S.Yu. // Computational Materials Science. 2016. V. 121. P. 119. https://www.doi.org/10.1016/j.commatsci.2016.04.034
  54. Kurganskii S.I., Manyakin M.D., Dubrovskii O.I., Chuvenkova O.A., Turishchev S.Yu., Domashevskaya E.P. // Physics of the Solid State. 2014. V. 56. № 9. P. 1748. https://www.doi.org/10.1134/S1063783414090170
  55. Chuvenkova O.A., Domashevskaya E.P., Ryabtsev S.V., Vysotskii D.V., Popov A.E., Yurakov Yu.A., Vilkov O.Yu., Ovsyannikov R., Appathurai N., Turishchev S.Yu. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2014. V. 8. № 1. P. 111. https://www.doi.org/10.1134/S102745101401025X
  56. Baumann T.F., Kucheyev S.O., Gash A.E., Satcher J.H. // Adv. Materials. 2005. V. 17. № 12. P. 1546. https://www.doi.org/10.1002/adma.200500074
  57. Hollinger G., Himpsel F.J. // Appl. Phys. Lett. 1984. V. 44. № 1. P. 93. https://www.doi.org/10.1063/1.94565
  58. LaSurface (2024) XPS Database. http://www.lasurface.com/database/elementxps.php. Cited 29 November 2024
  59. NIST X-ray Photoelectron Spectroscopy Database (SRD 20), Version 5.0. (2024) http://srdata.nist.gov/xps Cited 29 November 2024. https://www.doi.org/10.18434/T4T88K
  60. Чувенкова О.А., Домашевская Э.П., Рябцев С.В., Юраков Ю.А., Овсянников Р., Cui Y., Son J.-Y., Oji H., Турищев С.Ю. // конденсированные среды и межфазные границы. 2014. Т. 16. № 4. С. 513.
  61. Hu H., Cheng H., Li G., Liu J., Yu Y. // J. Mater. Chem. A. 2015. V. 3. P. 2748. https://www.doi.org/10.1039/C4TA05434B
  62. Cheng Y., Xie H., Yu F., Zhang J., Wang Y., Luo X., Shi B., Liu B. // Ionics. 2021. V. 27. P. 4143. https://www.doi.org/10.1007/s11581-021-04177-9
  63. Wang M., Wang X., Yao Z., Tang W., Xia X., Gu Ch., Tu J. // Appl. Mater. Interfaces. 2019. V. 11. № 27. P. 24198. https://www.doi.org/10.1021/acsami.9b08378
  64. Nagasawa Y., Choso T., Karasuda T., Shimomura S., Outang F., Tabata K., Yamaguchi Y. // Surf. Sci. 1999. V. 433–435. P. 226. https://www.doi.org/10.1016/S0039-6028(99)00044-8
  65. Hollinger G. // Appl. Surf. Sci. 1981. V. 8. P. 318. https://www.doi.org/10.1016/0378-5963(81)90126-4.
  66. Amanullah F.M., Pratap K.J., Hari Babu V. // Materials Science and Engineering B. 1998. V. 52. P. 93. https://www.doi.org/10.1016/S0921-5107(98)00113-5
  67. Xing M., Shen F., Qiu B., Zhang J. // Sci. Rep. 2014. V. 4. P. 6341. https://www.doi.org/10.1038/srep06341

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).