In situ X-Ray Diffraction Studies of the Growing Thin Films of YSZ and GDC Using Synchrotron Radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, the formation process and time evolution of the crystal structure of thin films of yttriastabilized zirconia ZrO2:Y2O3 (YSZ) and gadolinia-doped ceria Ce0.9Gd0.1O2, (GDC) were investigated. YSZ and GDC films for use as an electrolyte layer in microtubular solid oxide fuel cells were formed by reactive mid-frequency magnetron sputtering on WC-Co alloy substrates. The films were deposited in a vacuum setup specially designed for in situ X-ray diffraction studies of thin film growth using synchrotron radiation. It is shown that the texture of the formed films is determined by the substrate temperature. At a substrate temperature of 100‒187°C, YSZ and GDC films with a cubic crystal lattice are formed. Under such deposition conditions, YSZ films have a preferred orientation of (200), whereas for GDC films the preferred orientation changes from (111) to (220) during growth. To obtain YSZ and GDC films with a preferred orientation (111), which have the highest ionic conductivity, it is necessary to increase the mobility of adsorbed atoms by increasing the substrate temperature or applying a bias voltage to it. It is also shown that with the deposition parameters used, compressive residual stresses are formed in both films, which decrease slightly in amplitude with increasing film thickness due to the increase in grain size.

About the authors

А. А. Solovyev

Institute of High Current Electronics SB RAS

Email: andrewsol@mail.ru
Tomsk, Russia

А. V. Shipilova

Institute of High Current Electronics SB RAS

Email: lassie2@yandex.ru
Tomsk, Russia

S. V. Rabotkin

Institute of High Current Electronics SB RAS

Tomsk, Russia

I. I. Balash

Budker Institute of Nuclear Physics SB RAS

Novosibirsk, Russia

A. N. Shmakov

Budker Institute of Nuclear Physics SB RAS

Novosibirsk, Russia

References

  1. Naik S.N., Walley S.M. // J. Mater. Sci. 2019. V. 55. Iss. 7. P. 2661. https://www.doi.org/10.1007/s10853-019-04160-w
  2. Mayadas A.F., Shatzkes M. // Phys. Rev. B. 1970. V. 1. Iss. 4. P. 1382. https://www.doi.org/10.1103/physrevb.1.1382
  3. Chason E., Engwall A.M., Rao Z., Nishimura T. // J. Appl. Phys. 2018. V. 123. Iss. 18. P. 185305. https://www.doi.org/10.1063/1.5030740
  4. Azushima A., Tanno Y., Iwata H., Aoki K. // Wear. 2008. V. 265. P. 1017. https://www.doi.org/10.1016/j.wear.2008.02.019
  5. Baure G., Zhou H., Chung C.-C., Stozhkova M.A., Jones J.L., Nino J.C. // Acta Mater. 2017. V. 133. P. 81. https://www.doi.org/10.1016/j.actamat.2017.05.030
  6. Liang F., Yang JR., Zhao Y., Zhou Y., Yan Z., He J.C., Yuan Q., Wu J., Liu P., Zhong Z., Han M. // Int. J. Hydrog. Energy. 2022. V. 47. Iss. 87. P. 36926. https://www.doi.org/10.1016/j.ijhydene.2022.08.237
  7. Nédélec R., Uhlenbruck S., Sebold D., Haanappel V.A.C., Buchkremer H.-P., Stöver D. // J. Power Sources. 2012. V. 205. P. 157. https://www.doi.org/10.1016/j.jpowsour.2012.01.054
  8. Coddet P., Caillard A., Vulliet J., Richard C., Thomann A.L. // Surf. Coating Technol. 2018. V. 349. P. 133. https://www.doi.org/10.1016/j.surfcoat.2018.05.065
  9. Arunkumar P., Ramaseshan R., Dash S., Suresh Babu K. // Sci Rep. 2017. V. 7. Iss. 1. P. 3450. https://www.doi.org/10.1038/s41598-017-03705-w
  10. Pan Y., Wang J., Lu Z., Wang R., Xu Z. // Int. J. Hydrog. Energy. 2024. V. 50. P. 1179. https://www.doi.org/10.1016/j.ijhydene.2023.10.143
  11. Schroeder J.L., Thomson W., Howard B., Schell N., Näslund L.-Å., Rogström L., Johansson-Jõesaar M.P., Ghafoor N., Odén M., Nothnagel E., Shepard A., Greer J., Birch J. // Rev. Sci. Instrum. 2015. V. 86. P. 095113. https://www.doi.org/10.1063/1.4930243
  12. Döhrmann R., Botta S., Buffet A., Santoro G., Schlage K., Schwartzkopf M., Bommel S., Risch J.F.H., Mannweiler R., Brunner S., Metwalli E., Müller-Buschbaum P., Roth S.V. // Rev. Sci. Instrum. 2013. V. 84. Iss. 4. P. 043901. https://www.doi.org/10.1063/1.4798544
  13. Krause B., Darma S., Kaufholz M., Gräfe H.-H., Ulrich S., Mantilla M., Weigel R., Remboldd S., Baumbach T. // J. Synchrotron Radiat. 2012. V. 19. Iss. 2. P. 216. https://www.doi.org/10.1107/s0909049511052320
  14. Bürgi J., Neuenschwander R., Kellermann G., Molleja J.G., Craievich A.F., Feugeas J. // Rev. Sci. Instrum. 2013. V. 84. Iss. 1. P. 015102. https://www.doi.org/10.1063/1.4773002
  15. Depla D., Strijckmans K., Dulmaa A., Cougnon F., Dedoncker R., Schelfhout R., Schramm I., Moens F., Gryse R. // Thin Solid Films. 2019. V. 688. P. 137326. https://www.doi.org/10.1016/j.tsf.2019.05.045
  16. Windischmann H. // Crit. Rev. Solid State Mater. Sci. 1992. V. 17. P. 547. https://www.doi.org/10.1080/10408439208244586
  17. Coppola N., Polverino P., Carapella G., Sacco C., Galdi A., Ubaldini A., Vaiano V., Montinaro D., Maritato L., Pianese C. // Catalysts. 2018. V. 8. P. 571. https://www.doi.org/10.3390/catal8120571
  18. Moon M., Guha P., Oh S., Jung H., Yang S., Lee J.-H., Jun Y., Son J.-W., Kwon D.-H. // J. Power Sources. 2024. V. 589. P. 233774. https://www.doi.org/10.1016/j.jpowsour.2023.233774
  19. Thornton J.A. // J. Vac. Sci. Technol. A. 1986. V. 4. P. 3059. https://www.doi.org/10.1116/1.573628
  20. Mahieu S., Ghekiere P., Winter G., Heirwegh S., Depla D., Gryse R., Lebedev O.I., Tendeloo G.V. // J. Cryst. Growth. 2005. V. 279. Iss. 1–2. P. 100. https://www.doi.org/10.1016/j.jcrysgro.2005.02.014
  21. Mahieu S., Winter G., Depla D., Gryse R., Denul J. // Surf. Coat. Technol. 2004. V. 187. Iss. 1. P. 122. https://www.doi.org/10.1016/j.surfcoat.2004.01.008
  22. Lamas J.S., Leroy W.P., Depla D. // Thin Solid Films. 2012. V. 520. P. 4782. https://www.doi.org/10.1016/j.tsf.2011.10.179
  23. Mahieu S., Ghekiere P., Winter G., Depla D., Gryse R., Lebedev O.I., Tendeloo G.V. // Thin Solid Films. 2005. V. 484. Iss. 1–2. P. 18. https://www.doi.org/10.1016/j.tsf.2005.01.021
  24. Sønderby S., Aijaz A., Helmersson U., Sarakinos K., Eklund P. // Surf. Coat. Technol. 2014. V. 240. P. 1. https://www.doi.org/10.1016/j.surfcoat.2013.12.001
  25. Mickan M., Coddet P., Vulliet J., Caillard A., Sauvage T., Thomann A.L. // Surf. Coat. Technol. 2020. V. 398. P. 126095. https://www.doi.org/10.1016/j.surfcoat.2020.126095
  26. Chason E., Guduru P.R. // J. Appl. Phys. 2016. V. 119. P. 191101. https://www.doi.org/10.1063/1.4949263
  27. Nayak S., Hsu T.-W., Boyd R., Gibmeier J., Schell N., Birch J., Rogström L., Odén M. // arXiv:2312.13160. https://www.doi.org/10.48550/arXiv.2312.13160
  28. Chaudhari P. // J. Vac. Sci. Technol. 1972. V. 9. Iss. 1. P. 520. https://www.doi.org/10.1116/1.1316674
  29. Nayak S., Hsu T.-W., Rogström L., Moreno M., Andersson J.M., Johansson-Jöesaar M.P., Boyd R., Schell N., Gibmeier J., Birch J., Odén M. In-situ real-time evolution of intrinsic stresses and microstructure during growth of cathodic arc deposited (Al,Ti)N coatings. arXiv:2301.03935 https://www.doi.org/10.48550/arXiv.2301.03935
  30. Dulmaa A., Cougnon F.G., Dedoncker R., Depla D. // Acta Mater. 2021. V. 212. P. 116896. https://www.doi.org/10.1016/j.actamat.2021.116896

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).