Optical Spectra, Morphology and Photoconductivity of SnPc Thin Films Deposited at Different Temperatures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Thin films of tin (II) phthalocyanine (SnPc) have been thermally evaporated in vacuum on substrates at different temperature (Tg). Their transmission spectra in the UV, visible and near IR ranges have been measured. It is shown that a 100 nm thick SnPc films becomes almost panchromatic photoabsorbers: the “green gap” characteristic of porphyrinoids can narrow to the range 410–490 nm, and the long-wavelength edge of the Q-band can reach 1100–1200 nm, depending on the growth conditions. At Tg below room temperature, the films are X-ray-amorphous, and at Tg > 25°C, the triclinic polymorph accumulates. The structure of the films is always granular, but the size, shape and packing of grains largely depend on Tg. The specific conductivity of SnPc thin films has been measured in the dark and under continuous white light (solar simulator) or filtered near-infrared light. It is found that for SnPc films grown at elevated Tg, the photo-to-dark current ratio exceeds an order of magnitude under residual illumination at wavelengths longer than 1 µm.

About the authors

V. V. Travkin

Institute for Physics of Microstructures RAS

Email: trav@ipmras.ru
Nizhny Novgorod, Russia

A. I. Koptyaev

Institute for Physics of Microstructures RAS

Nizhny Novgorod, Russia

A. Yu. Luk’yanov

Institute for Physics of Microstructures RAS

Nizhny Novgorod, Russia

G. L. Pakhomov

Institute for Physics of Microstructures RAS

Nizhny Novgorod, Russia

References

  1. Yang F., Lunt R.R., Forrest S.R. // Appl. Phys. Lett. 2008. V. 92. P. 053310. https://doi.org/10.1063/1.2839408
  2. Bao Z., Lovinger A.J., Dodabalapur A. // Adv. Mater. 1997. V. 9. № 1. P. 42. https://doi.org/10.1002/adma.19970090108
  3. Zhang X., Gao N., Li Y., Xie L., Yu X., Lu X., Gao X., Gao J., Shui L., Wu S., Liu J.-Mi. // ACS Appl. En. Mater. 2020. V. 3. P. 7832. https://doi.org/10.1021/acsaem.0c01184
  4. Huang F., Peng Y., Liu G. // J. Phys. Chem. C. 2019. V. 123. P. 11073. https://doi.org/10.1021/acs.jpcc.9b00278
  5. Hijikata Y., Inoue J., Yamashita M. // Jpn. J. Appl. Phys. 2008. V. 47. № 1. P. 513. https://doi.org/10.1143/JJAP.47.513
  6. Liang Y., Lu W., Luo X., He L., Xu K., Zhao F., Huang F., Lu F., Peng Y. // Synth. Met. 2018. V. 240. P. 44. https://doi.org/10.1016/j.synthmet.2018.03.016
  7. Zhou W., Yutronkie N.J., Lessard B.H., Brusso J.L. // Mater. Adv. 2021. V. 2. P. 165. https://doi.org/10.1039/d0ma00864h
  8. Hamamoto N., Sonoda H., Sumimoto M., Hori K., Fujimoto H. // RSC Adv. 2017. V. 7. P. 8646. https://doi.org/10.1039/c6ra27269j
  9. Kashimoto Y., Yonezawa K., Meissner M., Gruenewald M., Ueba T., Kera S., Forker R., Fritz T., Yoshida H. // J. Phys. Chem. C. 2018. V. 122. P. 12090. https://doi.org/10.1021/acs.jpcc.8b02581
  10. Li R., Wu T., Wang Y., Yuan C., Xue Q., Li N., Hou S., Wang Y. // J. Clust. Sci. 2019. V. 30. P. 1259. https://doi.org/10.1007/s10876-019-01610-y
  11. Bodek L., Engelund M., Cebrat A., Such B. // Beilstein J. Nanotechnol. 2020. V. 11. P. 821. https://doi.org/10.3762/bjnano.11.67
  12. Forker R., Gruenewald M., Sojka F., Peuker J., Mueller P., Zwick C., Huempfner T., Meissner M., Fritz T. // J. Phys.: Condens. Matter. 2019. V. 31. P. 134004. https://doi.org/10.1088/1361-648X/aafeae
  13. Chen R.C., Menon C.S. // AIP Conf. Proc. 2008. V. 1004. P. 213. https://doi.org/10.1063/1.2927555
  14. El-Nahass M.M., Yaghmour S. // Appl. Surf. Sci. 2008. V. 255. P. 1631. https://doi.org/10.1016/j.apsusc.2008.08.114
  15. Madhuri K.P., Kaur P., Ali M.E., John N.S. // J. Phys. Chem. C. 2017. V. 121. P. 9249. https://doi.org/10.1021/acs.jpcc.6b09240
  16. Травкин В.В., Коптяев А.И., Юнин П.А., Гордеев К.М., Пахомов Г.Л. // Журн. структурной химии. 2024. Т. 65. № 6. С. 127457. https://doi.org/https://doi.org/10.26902/JSC_id127457
  17. Zhabanov Yu.A., Eroshin A.V., Koifman O.I., Travkin V.V., Pakhomov G.L. // Macroheterocycles. 2024. V. 17. № 1. P. 4. https://doi.org/10.6060/mhc245693p
  18. Vearey-Roberts A.R., Steiner H.J., Evans S., Cerrillo I., Mendez J., Cabailh G., O’Brien S., Wells J.W., McGovern I.T., Evans D.A. // Appl. Surf. Sci. 2004. V. 234. P. 131. https://doi.org/10.1016/j.apsusc.2004.05.068
  19. Gordan O.D., Friedrich M., Michaelis W., Kruger R., Kampen T., Schlettwein D., Zahn D.R.T. // J. Mater. Res. 2004. V. 19. № 7. P. 2008. https://doi.org/10.1557/JMR.2004.0264
  20. Yamashita A., Maruno T., Hayashi T. // J. Phys. Chem. 1993. V. 97. № 18. P. 4567. https://doi.org/10.1021/j100120a001
  21. Schlettwein D., Tada H., Mashiko S. // Langmuir. 2000. V. 16. № 6. P. 2872. https://doi.org/10.1021/la991111i
  22. Yamashita A., Matsumoto S., Sakata S., Hayashi T., Kanbara H. // J. Phys. Chem. B. 1998. V. 102. P. 5165. https://doi.org/10.1021/jp9811934
  23. Kubiak R., Janczak J. // J. Alloys Compd. 1992. V. 189. P. 107. https://doi.org/10.1016/0925-8388(92)90054-D
  24. Friedel M.K., Hoskins B.F., Martin R.L., Mason S.A. // J. Chem. Soc. D. 1970. № 7. P. 400. https://doi.org/10.1039/C29700000400
  25. Hwang J., Wan A., Kahn A. // Mat. Sci. Eng. R. 2009. V. 64. P. 1. https://doi.org/10.1016/j.mser.2008.12.001
  26. Drozdov M.N., Yunin P.A., Travkin V.V., Koptyaev A.I., Pakhomov G.L. // Adv. Mater. Interfaces. 2019. V. 6. № 12. P. 1900364. https://doi.org/10.1002/admi.201900364
  27. Liu G., Liu M., Wang H., Shang L.-W., Ji Z.-Y., Liu X.-H., Liu J. // Chin. Phys. B. 2009. V. 18. № 8. P. 3530. https://doi.org/10.1088/1674-1056/18/8/065
  28. Pakhomov G.L., Travkin V.V., Drozdov M.N., Lopatin M.A., Shashkin V.I. // Synth. Met. 2014. V. 195. № 9. P. 91. https://doi.org/10.1016/j.synthmet.2014.05.006
  29. Bednorz M., Matt G.J., Głowacki E.D., Fromherz T., Brabec C.J., Scharber M.C., Sitter H., Sariciftci N.S. // Org. Electron. 2013. V. 14. P. 1344. https://doi.org/10.1016/j.orgel.2013.02.009
  30. Kanayama S., Okuyama N., Yasunaga H. // Jpn. J. Appl. Phys. 1981. V. 20. P. 141. https://doi.org/10.7567/JJAPS.20S2.141
  31. Klyamer D., Sukhikh A.S., Bonegardt D.V., Basova T.V. // Macroheterocycles. 2024. V. 17. № 3. P. 213. https://doi.org/10.6060/mhc245862b

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).