Potential of High-Frequency Cathode Sputtering Method for Synthesis of Lead-Containing Antiferroelectric Films

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The potential of using the method of high-frequency cathode sputtering in an oxygen atmosphere for the synthesis of thin-film lead-containing antiferroelectric materials is investigated. Two films with the chemical composition of the PbHfO3 target were synthesized on Si(001) and SrRuO3/SrTiO3/MgO(001) substrates. The formed films were characterized by single-crystal X-ray diffraction, including reverse space mapping, and energy dispersive spectroscopy. It has been demonstrated that this synthesis method makes it possible to grow polycrystalline films based on materials with a perovskite structure. In this case, an epitaxial film with rhombic syngony and a new crystal lattice, different from the one known for PbHfO3, was obtained on a heterophase substrate. The revealed ratio of the parameters of the film cells and the intermediate layer is 7 to 6, i.e. the coincidence of the nodes of the film and substrate structure occurs when 7 film cells and 6 cells of the SrRuO3 layer are superimposed. This indicates the complex nature of the orientation. The morphology analysis showed significant differences between the samples in terms of grain size and distribution. The data obtained confirm the high sensitivity of the phase composition to the type of substrate and demonstrate the promise of the high-frequency cathode sputtering method for creating new functional oxide films suitable for use in microelectronics, sensors and energy-efficient devices.

About the authors

N. S Zhukova

Peter the Great St. Petersburg Polytechnic University

Email: zhukovaaa3781@gmail.com
St. Petersburg, Russia

A. E Ganzha

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

M. A Kniazeva

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

A. V Filimonov

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

A. S Goltaev

St. Petersburg National Research Academic University named after Zh.I. Alferov

St. Petersburg, Russia

A. V Pavlenko

Southern Scientific Center of the Russian Academy of Sciences; Southern Federal University

Rostov-on-Don, Russia; Rostov-on-Don, Russia

R. G Burkovsky

Peter the Great St. Petersburg Polytechnic University

Email: roman.burkovsky@gmail.com
St. Petersburg, Russia

References

  1. Tagantsev A., Vaideeswaran K., Vakhrushev S., Filimonov A., Burkovsky R.G., Shaganov A., Andronikova D., Rudskoy A., Baron A., Uchiyama H., Chernyshov D., Bosak A., Ujma Z., Roleder K., Majchrowski A., Ko J.-H., Setter N. // Nature Communications. 2013. V. 4. P. 2229. https://www.doi.org/10.1038/ncomms3229
  2. Maniwa H., Sawaguchi E., Hoshino S. // Phys. Rev. 1951. V. 83. P. 1078. https://doi.org/10.1103/PhysRev.83.1078
  3. Hanrahan B., Milesi-Brault C., Leff A., Payne A., Liu S., Guennou M., Strnad N. // APL Materials. 2021. V. 9. № 2. P. 021108. https://doi.org/10.1063/5.0035730
  4. Si Y., Fan N., Dong Y., Ye Z., Deng S., Li Y., Zhou C., Zeng Q., You L., Zhu Y., Luo Z., Das S., Bellaiche L., Xu B., Liu H., Chen Z. // Nature Communications. 2025. V. 16. № 1. P. 1. https://doi.org/10.1038/s41467-025-47483-4
  5. Corker D.L., Glazer A.M., Kaminsky W., Whatmore R.W., Dec J., Roleder K. // Acta Crystallographica B: Structural Science. 1998. V. 54. № 1. P. 18. https://doi.org/10.1107/S0108768197009208
  6. Park M.H., Hwang C.S. // Topics in Applied Physics. 2016. V. 131. https://doi.org/10.1007/978-94-024-0841-6
  7. Vorotilov K., Sigov A. // Phys. Solid State. 2012. V. 54. № 5. P. 894. https://doi.org/10.1134/S1063783412050460
  8. Jiang Y., Tian Z., Kavle P., Pan H., Martin L.W. // APL Materials. 2024. V. 12. № 4. P. 041116. https://doi.org/10.1063/5.0203014
  9. Jurečič V., Rojac T., Bobnar V., Novak N. // Adv. Functional Mater. 2025. V. 35. № 2. P. 2412739. https://doi.org/10.1002/adfm.202412739
  10. Si Y., Zhang T., Liu C., Das S., Xu B., Burkovsky R.G., Wei X.-K., Chen Z. // Prog. Mater. Sci. 2024. V. 142. P. 101231. https://doi.org/10.1016/j.pmatsci.2023.101231
  11. Burkovsky R.G., Lityagin G.A., Ganzha A.E., Vakulenko A.F., Gao R., Dasgupta A., Xu B., Filimonov A.V., Martin L.W. // Phys. Rev. B. 2022. V. 105. P. 125409. https://doi.org/10.1103/PhysRevB.105.125409
  12. Lityagin G.A., Vakulenko A.F., Gao R., Dasgupta A., Filimonov A.V., Burkovsky R.G. // J. Phys.: Conference Series. 2019. V. 1236. P. 012018. https://doi.org/10.1088/1742-6596/1236/1/012018
  13. Мухортов В.М., Юзюк Ю.И. Гетероструктуры на основе наноразмерных сегнетоэлектрических пленок: получение, свойства и применение. Ростов-на-Дону: Изд-во Южного научного центра РАН, 2008. 224 с.
  14. Павленко А.В., Стрюков Д.В., Тер-Оганесян Н.В. // Письма в ЖТФ. 2020. Т. 46. Вып. 2. С. 15. https://doi.org/10.21883/PJTF.2020.02.48945.18046
  15. Laudadio E., Stipa P., Pierantoni L., Mencarelli D. // Crystals. 2022. V. 12. № 1. P. 90. https://doi.org/10.3390/cryst12010090
  16. Cai L., Arias A.L., Nino J.C. // J. Mater. Chem. 2011. V. 21. № 11. P. 3611. https://doi.org/10.1039/c0jm03380d
  17. Talanov M.V., Talanov V.M. // Chem. Mater. 2021. V. 33. № 8. P. 2706. https://doi.org/10.1021/acs.chemmater.0c04864
  18. Eom C.B., Chen Y., Pan X., Schlom D.G. // Nature Rev. Mater. 2019. V. 4. № 4. P. 257. https://doi.org/10.1038/s41578-019-0095-2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).