Thermomechanical Modeling of Thermal Fields and Deformation of Large-Sized Electrodes Made of Various Materials. Results of Numerical Simulation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An increasing rate of the near-Earth space contamination with man-made debris hinders the long-term sustainable development of space activities, including those in the actively used geostationary earth orbit. Space debris is understood as the non-functioning objects of space technology and their fragments. To solve this problem, an ion source has been developed that forms a weakly diverging ion beam, under the contactless impact of which a space debris object should move in the direction of the disposal orbit. Minimizing the ion beam divergence angle increases the range of impact on space debris object. However, there is a problem of the IS stable operation, which is associated with the functioning of the ion-extraction system that is responsible for the configuration of a weakly diverging ion beam. The ion-extraction system is the most critical and complicated unit of the ion source in terms of design and technology. The peculiarity of operation of the ion-extraction system electrodes is related to their non-uniform heating and deformation, which result in degradation of the ion source performance (ion beam divergence half-angle, ion current density, and thrust) and in the high-voltage breakdown. The electrodes have different thicknesses, can be made of different materials and their heating is characterized by different thermal profiles. For the ion-extraction system reliable operation, it is necessary to ensure the stability of gap between the emission electrode and the accelerating electrode in operating modes. Non-uniform heating leads to additional deflections of electrodes. Thus, it is important to be able to calculate the initial shape of electrodes and their deformation when heated up to operational temperatures, at which stable operation of the ion-extraction systems hold be ensured. The importance of not only using the developed mechanical-mathematical model of ion-extraction system electrodes, but also of performing numerical modeling for the deformed state of the ion-extraction system electrodes using a simplified algorithm. It allows the assessment of the deformed state with a significant reduction in modeling time.

About the authors

A. I Mogulkin

Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute

Email: revengard@yandex.ru
Moscow, Russia

V. V Svotina

Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute

Moscow, Russia

A. V Melnikov

Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute

Moscow, Russia

O. D Peysakhovich

Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute

Moscow, Russia

D. S Demchenko

Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute

Moscow, Russia

V. K Abgaryan

Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute

Moscow, Russia

References

  1. Takao Y., Miyamoto T., Yamawaki K., Maeyama T., Nakashima H. // Vacuum. 2002. V. 65. Iss. 3. P. 361. https://www.doi.org/10.1016/S0042-207X(01)00443-2
  2. Kawnine T., Kawnine M. Short Review on Electric Propulsion System: Ion Thruster. https://www.doi.org/10.13140/2.1.2331.8406
  3. Kravchenko D., Lovtsov A., Madeev S. // AIP Conf. Proc. 2019. V. 2179. Iss. 1. P. 020012. https://www.doi.org/10.1063/1.5135485
  4. Loeb H., Feili D., Popov G.A., Obukhov V.A., Balashov V.V., Mogulkin A.I., Murashko V.M., Nesterenko A.N., Khartov S.A. Design of High-Power High-Specific Impulse RF-Ion Thruster — IEPC-2011-290. // Proc. of 32nd International Electric Propulsion Conference, 11-16 Sept. 2011, Wiesbaden, Germany.
  5. Feili D., Lotz B., Loeb H.W., Leiter H., Boss M., Braeg R., di Cara D.M. Radio Frequency Mini Ion Engine for Fine Attitude Control and Formation Flying Applications //Second CEAS European Air & Space Conference, Manchester, United Kingdom.
  6. Dachward B., Ohndorf A., Spurmann J., Loeb H.W., Schartner K.H., Seboldt W. Mission Design for a SEP Mission to Saturn. // 60th International Astronautical Congress 2009, IAC 2009. P. 6692.
  7. Dachward B., Seboldt W., Loeb H.W., Schartner K.-H. // Acta Astronautica. 2008. V. 63. Iss. 1–4. P. 91. https://www.doi.org/10.1016/j.actaastro.2007.12.023
  8. Larsson O., Hedengen G. Electrostatic Ion Thrusters for Space Debris Removal. https://www.doi.org/1.869341.155015623
  9. Obukhov V.A., Kirillov V.A., Petukhov V.G., Popov G.A., Svotina V.V., Testoyedov N.A., Usovik I.V. // Acta Astronautica. 2021. V. 181. P. 569. https://www.doi.org/10.1016/j.actaastro.2021.01.043
  10. Shagayda A.A., Lovtsov A.S., Muravlev V.A., Selivanov M.Y. Ion Thruster Development for a Transport and Power Generation Module Project. // Joint Conference of 30th International Symposium on Space Technology and Science, 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan July 4–10, 2015.
  11. Koroteev A.S., Lovtsov A.S., Muravlev V.A., Selivanov M.Y., Shagayda A.A. // Europ. Phys. J. D. 2017. V. 71. P. 120. https://www.doi.org/10.1140/epjd/e2017-70644-6
  12. Loeb H.W., Petukhov V.G., Popov G.A., Mogulkin A.I. // Acta Astronautica. 2015. V. 116. P. 299.
  13. Konstantinov M.S., Loeb H.W., Petukhov V.G., Popov G.A. // Int. J. Space Technol. Management Innovation. 2011. https://www.doi.org/10.4018/ijstmi.2011070101
  14. Mane S., Devan N’s V., Gupta R. // Int. J. Innovative Res. Sci. Eng. Technol. 2022. V. 11. Iss. 5. P. 6180. https://www.doi.org/10.15680/IJIRSET.2022.1105269
  15. Andrews S., Berthoud L. // Acta Astronautica. 2020. V. 170. P. 386. https://www.doi.org/10.1016/j.actaastro.2019.12.034
  16. Gafarov A.A., Drondin A.V., Zakharenkov L.E., Klimenko A.G., Kravchenko D.A., Kudinov A.S., Lovtsov A.S., Lukoyanov Yu.M., Ogloblina I.S., Semenkin A.V., Sobolev V.V., Solodukhin A.E., Yanchur S.V., Shagaida A.A. // AIP Conf. Proc. 2021. V. 2318. Iss. 1. P. 040001. https://www.doi.org/10.1063/5.0035980
  17. Antipov E.A., Balashov V.V., Veber A.V., Kufyriev R.Y., Mogulkin A.I., Nigmatzjanov V.V., Pankov A.I., Popov G.A., Sitnikov S.A., Khartov S.A. The The Way to Choose Structure Materials for High Frequency Ion Thrusters // Trudy MAI. 2013. № 65.
  18. Патент на полезную модель 116273 (РФ). Источник ионов. / МАИ. Моуглкин А.И., Обухов В.А., Балашов В.В., Нигматзянов В.В., Смирнова М.Е., Хартов С.А. // 2012. № 12.
  19. Патент 2543063 (РФ). Способ изготовления электродов ионно-оптической системыю / МАИ. Балашов В.В., Попов Г.А., Антипов Е.А., Ионов А.В., Могулкин А.И. // 2015. № 6.
  20. Могулкин А.И. Механико-математическая модель деформаций профилированных электродов ионных двигателей: Дис. канд. технических наук: 05.07.05. Москва: МАИ, 2015. 161 с.
  21. Svotina V.V., Mogulkin A.I., Kupreeva A.Yu. // Aerospace MDPI. 2021. V. 8. Iss. 7. P. 189. https://www.doi.org/10.3390/aerospace8070189
  22. Obukhov V.A., Grigor’yan V.G., Latyshev L.A. Ionno-opticheskie sistemy dlya formirovaniya intensivnyh pukov tyazhelyh ionov. // Plazmennye uskoriteli i ionnye inzhektory. M.: Nauka, GRFML, 1984. P. 181. (In Rus.)
  23. Engineering Simulation Software ANSYS (2024) ANSYS, Inc., USA. www.ansys.com (date of application 2023.02.10)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).