Effect of Electron Irradiation on the Parameters of Gallium Nitride in a Wide Temperature Range

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

When irradiating MOVPE n-GaN with electrons with an energy of 0.9 MeV, the values of the carrier removal rate, ƞe for room temperature were established for the first time within the framework of the Van der Pauw method. At the initial (before irradiation) electron concentration of 1.87 × 1017 cm–3, the values of ƞe were 0.023 cm–1 and 0.054 cm–1 at room temperature (293 K) for doses Фn = 1.7 × 1017 cm–2 and Фn = 3.7 × 1017 cm–2, respectively. With temperature decrease, the ƞe value increases: at T = –55°C, the ƞ–1e values are 0.064 cm and 0.086 cm–1 for doses of 1.7 × 1017 cm–2 and 3.7 × 1017 cm–2 respectively. The maximum mobility value in non-irradiated samples is 650 cm2/Vs. After irradiation with a dose of Фn = 3.7 × 1017 cm–2, the maximum mobility value decreases to 530 cm2/Vs. The change in mobility under the influence of irradiation is reliably traced at temperatures of T ≤ 260 K (1000/T ≈ 3.85).

About the authors

A. A. Lebedev

Ioffe Institute

Email: Shura.Lebe@mail.ioffe.ru
St. Petersburg, Russia

A. V. Sakharov

Ioffe Institute

St. Petersburg, Russia

G. A. Oganesyan

Ioffe Institute

St. Petersburg, Russia

V. V. Kozlovski

Department of Experimental Physics Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

D. A. Malevsky

Ioffe Institute

St. Petersburg, Russia

M. E. Levinshtein

Ioffe Institute

Email: Melev@nimis.ioffe.ru
St. Petersburg, Russia

A. E. Nikolaev

Ioffe Institute

St. Petersburg, Russia

References

  1. Buffolo M., Favero D., Marcuzzi A., De Santi C., Meneghesso G., Zanoni E., Meneghini M. // IEEE Trans. ED. 2024. V. 71. № 3. P. 1344. https://doi.org/10.1109/TED.2023.3346369
  2. Zhong Y., Zhang Jin., Wu S., Jia L., Yang X., Liu Y., Zhang Y., Sun Q. // Fundam. Res. 2022. V. 2. № 3. P. 462. https://doi.org/10.1016/j.fmre.2021.11.028
  3. Meneghini M., De Santi C., Abid I., Buffolo M., Marcello C., Khadar R.A., Nela L., Zagni N., Chini A., Medjdoub F., Meneghesso G., Verzellesi G., Zanoni E., Matioli E. // J. Appl. Phys. 2021. V.130. № 18. 181101. https://doi.org/10.1063/5.0061354
  4. Pushpakaran B.N., Subburaj A.S., Bayne S.B. // J. Electron. Mater. 2020. V. 49. № 11. P. 6247. https://doi.org/10.1007/s11664-020-08397-z
  5. Di Gioia G., Frayssinet E., Samnouni M., Chinni V., Mondal P., Treuttel J., Wallart X., Zegaoui M., Ducournau G., Roelens Y., Cordier Y.von, Zaknoune M. // J. Electron. Mat. 2023. V. 52. № 8. P. 5249. https://doi.org/10.1007/s11664-023-10499-3
  6. Han L., Li Y. // Electronics. 2023. V. 12. № 24. P. 4966. https://doi.org/10.3390/electronics12244966
  7. Chen J.X., Liu B.Y., Gu Y., Chen R., Li B., Zhou Ch. // IEEE Trans. ED. 2024. V. 71. № 7. P. 4233. https://doi.org/10.1109/TED.2024.3403530
  8. Wang Sh., Hu R., Chen G., Luo Ch., Gong M., Li Y., Huang M., Ma Y., Yang Zh. // Nucl. Instr. and Meth. in Phys. Research Section B. 2021. V. 494–495. (15 May). P. 53. https://doi.org/10.1016/j.nimb.2021.03.009
  9. Dennard R.H., F. Gaensslen F., Yu H.-N., Rideout L., Bassous E., LeBlanc A. // IEEE J. Solid State Circuits. 1974. V. 9. № 5. P. 256. https://doi.org/10.1109/JSSC.1974.1050511
  10. Polyakov A.Y., Lee I.-H., Smirnov N.B., Govorkov A.V., Kozhukhova E.A., Kolin N.G., Korulin A.V., Boiko V.M., S. J. Pearton S.J. // J. Appl. Phys. 2011. V. 109. № 12. P. 123703. https://doi.org/10.1063/1.3596819
  11. Брудный В.Н., Веревкин С.С., Говорков А.В., Ермаков В.С., Колин Н.Г., Корулин А.В., Поляков А.Я., Смирнов Н.Б. // ФТП. 2012. Т. 46. № 4. С. 451. ISSN 0015-3222
  12. Look D.C., Reynolds D.C., Hemsky J.W., Sizelove J.R., Jones R.L., J. Moln R.J. // Phys. Rev. Lett. 1997. V. 79. № 12. P. 2273. https://doi.org/10.1103/PhysRevLett.79.2273
  13. Fang Z.-Q., Hemsky J.W., Look D.C., Macka M.P. // Appl. Phys. Lett. 1998. V. 72. № 4. P. 448. https://doi.org/10.1063/1.120783
  14. Emtsev V.V., Davydov V.Yu., Kozlovskii V.V., Oganesyan G.A., Poloskin D.S., Smirnov A.N., Tropp E.A., Morozov Yu.G. // Physica B. 2007. V. 401–402. (15 December). P. 315. https://doi.org/10.1016/j.physb.2007.08.176
  15. Lu T., Wang Ch. // Electronics. 2022. V. 11. № 8. P. 1186. https://doi.org/10.3390/electronics11081186
  16. Agullo-Lopez F., Catlow C.R.A., Townsend P.D. Point Defects in Materials. Academic: New York, 1988. P. 445. ISBN 10: 0120445107
  17. Козловский В.В., Васильев А.Э., Лебедев А.А., Стрельчук А.М., Левинштейн М.Е. // Поверх-ность. Рентгеновские, синхротр. и нейтрон. исслед. 2022. Т. 16. № 6. С. 64. https://doi.org/10.31857/S1028096022060097
  18. Kozlovski V.V., Vasil’ev A.E., Lebedev A.A., Davydovskaya K.S., Levinshtein M.E. // Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2023. V. 17. № 2. P. 397. https://doi.org/10.1134/S1027451023020076
  19. Kozlovski V.V., Lebedev A.A., Bogdanova E.V. // J. Appl. Phys. 2015. V. 117. № 15. P.155702. https://doi.org/10.1063/1.4918607
  20. Emtsev V.V., Davydov V.Yu., Emtsev K.V., Poloskin D.S., Oganesyan G.A., Kozlovskii V.V., E. E. Haller. // Phys. Stat. Sol. (C). 2003. № 2. P. 601. https://doi.org/10.1002/pssc.200306191

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).