On the Applicability of Spacecraft Passive Protection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The spacecraft passive protection of a monolithic and a screen types has been considered. The screen passive protection includes one additional protective shield placed in front of the protected wall. The penetration length of particles for various types of passive protection has been estimated. Based on the simulation results and experimental data presented in the literature, the applicability ranges of various types of spacecraft passive protection are formulated.

About the authors

V. V. Svotina

Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (National Research University)

Email: vsvotina@mail.ru
Moscow, Russia

M. V. Cherkasova

Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (National Research University)

Moscow, Russia

А. V. Melnikov

Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (National Research University)

Moscow, Russia

References

  1. Zook H.A., Flaherty R.E., Kessler D.J. // Planetary Spaсe Sci. 1970. V. 18. № 7. P. 953. https://doi.org/10.1016/0032-0633(70)90099-1
  2. Mironov V.V., Murtazov A. // Cosmic Res. 2015. V. 53. № 6. P. 430. http://doi.org/10.1134/S0010952515060027
  3. Johnson T. Detection and Analysis of the Electromagnetic Pulse from Hypervelocity Impact Plasma Expansion: Dissertation. Stanford: Stanford University, 2015.
  4. History of On-Orbit Satellite Fragmentations. Orbital Debris Program Office. 16th Edition. NASA/TP-20220019160, 2022.
  5. Space Track. http://www.space-track.org
  6. Orbital Debris. Quarterly News. 2023. V. 27. № 4. https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/ODQNv27i4.pdf
  7. ESA’s Annual Space Environment Report. ESA Space Debris Office. Iss. 7.1. https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf
  8. Шустов Б.М. // Всероссийская конференция с международным участием “Космический мусор: фундаментальные и практические аспекты угрозы”. Москва, 17–19 апреля 2019.
  9. Neider R.L. AIAA/NASA/DOD Orbital Debris Conference: Technical Issues and Future Directions. Baltimore, Maryland, April 16–19, 1990.
  10. IADC Report on the Status of the Space Debris Environment. IADC-23-01. Iss. 2. 2024.
  11. Space Debris. https://en.wikipedia.org/wiki/Space_debris
  12. Space Debris: Assessing the Risk. https://www.esa.int/Enabling_Support/Operations/Space_debris_assessing_the_risk
  13. Space Debris: What can We Do with Unwanted Satellites? https://the conversation.com/space-debris-what-can-we-do-with-unwanted-satellites-40736
  14. Kessler D.J., Cour-Palais B.G. // J. Geophys. Res. 1978. V. 83. № 6. P. 2637. http://doi.org/10.1029/JA083iA06p02637
  15. High-Velocity Impact Phenomena / Ed. Kinslow R. NY–London, 1970. 534 p.
  16. Johnson T. Detection and Analysis of the Electromagnetic Pulse from Hypervelocity Impact Plasma Expansion (Dissertation) / Department of Aeronautics and Astronautics of Stanford University, 2015.
  17. Фомин В.М., Гулидов А.И., Сапожников Г.А. и др. Высокоскоростное взаимодействие тел. Новосибирск: СО РАН, 1999, 600 с.
  18. Jonas G.H., Zukas J.A. // Int. J. Eng. Sci. 1978. V. 16. № 11. P. 879. https://doi.org/10.1016/0020-7225(78)90073-3
  19. Protecting the Space Station from Meteoroids and Orbital Debris. Committee on International Space Station Meteoroid/Debris Risk Management. National Academy Press, Washington, DC, USA, 1997.
  20. Christiansen E.L., Crewa J.L., Kerr J.H., Cour-Palais B.G., Cekowski E. // Int. J. Impact Eng. 1995. V. 17. № 1–3. P. 205. https://doi.org/10.1016/0734-743X(95)99847-K
  21. Добрица Б.Т., Добрица Д.Б. // Инженерный журнал: наука и инновации. 2016. Т. 11. № 1–12. https://doi.org/10.18698/2308-6033-2016-11-1554
  22. Годленко Н.А. Расчетно-экспериментальные методы исследования прочности трансформируемых модулей орбитальных станций при воздействии осколочно-метеороидной среды. Дис. … канд. тех. наук: 01.02.06. М.: ЦНИИмаш, 2017.
  23. Watts A.J., Atkinson D. Dimensional Scaling Impact Cratering and Perforation. https://ntrs.nasa.gov/api/citations/19950017423/downloads/19950017423.pdf
  24. Ламб Г. Гидродинамика. Т. 1. Регулярная и хаотическая динамика. Ижевск: R&C Dynamics, 2003. 452 с.
  25. Jakubov I.T., Khrapak A.G. // Thermal Phys. Rev. 1989. V. 2. № 4. Р. 269.
  26. Ichinaru S. // Rev. Modern Phys. 1982. V. 54. № 4. Р. 1017. https://doi.org/10.1103/RevModPhys.54.1017
  27. Christiansen E.L. Космонавтика и ракетостроение. 2000. № 8.
  28. Mott P.H., Twigg J.N., Roland D.F., Schrader H.S., Pathak J.A., Roland C.M. // Rev. Sci. Instrum. 2007. V. 78. № 4. Р. 045105. https://doi.org/10.1063/1.2719643
  29. Gacek S., Wang X. // Appl. Phys. A. 2009. V. 94. P. 675. https://doi.org/10.1007/s00339-008-4958-4
  30. Harrmann W., Wilbreck J.S. // Int. J. Impact Eng. 1987. V. 5. P. 307. https://doi.org/10.1016/0734-743x(87)90048-0
  31. Leontyev L.V. // Space Res. 1976. V. 14. P. 278.
  32. Encyclopedia of the Solar System / Ed. McFaddenL.-A. et al. https://archive.org/details/encyclopediaofthesolarsystem2nded_201909/mode/2up
  33. Realistic Protection for Spaceships Against Kinetic Projectiles. https://worldbuilding.stackexchange.com/questions/251766/realistic-protection-for-spaceships-against-kinetic-projectiles
  34. Portree D.S.F., Loftus J.P. Jr. Orbital Debris: A Chronology. NASA/TP-1999-208856, 1999.
  35. Handbook for Designing MMOD Protection / Ed. Christiansen E.L. et al. JSC-64399, January 28, 2009.155 p.
  36. Wen K., Chen Z.-W., Lu Y.-G. // Defence Technol. 2021. V. 17. № 6. P. 1864. https://doi.org/10.1016/j.dt.2020.11.005
  37. Svotina V.V. Spacecraft Protection Against Man-Made and Natural Space Debris Particles // Acta Astronautica. 2024. 225. P. 538–555. https://doi.org/10.1016/j.actaastro.2024.09.053

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).