On the Applicability of Spacecraft Passive Protection
- Authors: Svotina V.V.1, Cherkasova M.V.1, Melnikov А.V.1
-
Affiliations:
- Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (National Research University)
- Issue: No 7 (2025)
- Pages: 86–95
- Section: Articles
- URL: https://journals.rcsi.science/1028-0960/article/view/376425
- DOI: https://doi.org/10.7868/S3034573125070127
- ID: 376425
Cite item
Abstract
About the authors
V. V. Svotina
Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (National Research University)
Email: vsvotina@mail.ru
Moscow, Russia
M. V. Cherkasova
Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (National Research University)Moscow, Russia
А. V. Melnikov
Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (National Research University)Moscow, Russia
References
- Zook H.A., Flaherty R.E., Kessler D.J. // Planetary Spaсe Sci. 1970. V. 18. № 7. P. 953. https://doi.org/10.1016/0032-0633(70)90099-1
- Mironov V.V., Murtazov A. // Cosmic Res. 2015. V. 53. № 6. P. 430. http://doi.org/10.1134/S0010952515060027
- Johnson T. Detection and Analysis of the Electromagnetic Pulse from Hypervelocity Impact Plasma Expansion: Dissertation. Stanford: Stanford University, 2015.
- History of On-Orbit Satellite Fragmentations. Orbital Debris Program Office. 16th Edition. NASA/TP-20220019160, 2022.
- Space Track. http://www.space-track.org
- Orbital Debris. Quarterly News. 2023. V. 27. № 4. https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/ODQNv27i4.pdf
- ESA’s Annual Space Environment Report. ESA Space Debris Office. Iss. 7.1. https://www.sdo.esoc.esa.int/environment_report/Space_Environment_Report_latest.pdf
- Шустов Б.М. // Всероссийская конференция с международным участием “Космический мусор: фундаментальные и практические аспекты угрозы”. Москва, 17–19 апреля 2019.
- Neider R.L. AIAA/NASA/DOD Orbital Debris Conference: Technical Issues and Future Directions. Baltimore, Maryland, April 16–19, 1990.
- IADC Report on the Status of the Space Debris Environment. IADC-23-01. Iss. 2. 2024.
- Space Debris. https://en.wikipedia.org/wiki/Space_debris
- Space Debris: Assessing the Risk. https://www.esa.int/Enabling_Support/Operations/Space_debris_assessing_the_risk
- Space Debris: What can We Do with Unwanted Satellites? https://the conversation.com/space-debris-what-can-we-do-with-unwanted-satellites-40736
- Kessler D.J., Cour-Palais B.G. // J. Geophys. Res. 1978. V. 83. № 6. P. 2637. http://doi.org/10.1029/JA083iA06p02637
- High-Velocity Impact Phenomena / Ed. Kinslow R. NY–London, 1970. 534 p.
- Johnson T. Detection and Analysis of the Electromagnetic Pulse from Hypervelocity Impact Plasma Expansion (Dissertation) / Department of Aeronautics and Astronautics of Stanford University, 2015.
- Фомин В.М., Гулидов А.И., Сапожников Г.А. и др. Высокоскоростное взаимодействие тел. Новосибирск: СО РАН, 1999, 600 с.
- Jonas G.H., Zukas J.A. // Int. J. Eng. Sci. 1978. V. 16. № 11. P. 879. https://doi.org/10.1016/0020-7225(78)90073-3
- Protecting the Space Station from Meteoroids and Orbital Debris. Committee on International Space Station Meteoroid/Debris Risk Management. National Academy Press, Washington, DC, USA, 1997.
- Christiansen E.L., Crewa J.L., Kerr J.H., Cour-Palais B.G., Cekowski E. // Int. J. Impact Eng. 1995. V. 17. № 1–3. P. 205. https://doi.org/10.1016/0734-743X(95)99847-K
- Добрица Б.Т., Добрица Д.Б. // Инженерный журнал: наука и инновации. 2016. Т. 11. № 1–12. https://doi.org/10.18698/2308-6033-2016-11-1554
- Годленко Н.А. Расчетно-экспериментальные методы исследования прочности трансформируемых модулей орбитальных станций при воздействии осколочно-метеороидной среды. Дис. … канд. тех. наук: 01.02.06. М.: ЦНИИмаш, 2017.
- Watts A.J., Atkinson D. Dimensional Scaling Impact Cratering and Perforation. https://ntrs.nasa.gov/api/citations/19950017423/downloads/19950017423.pdf
- Ламб Г. Гидродинамика. Т. 1. Регулярная и хаотическая динамика. Ижевск: R&C Dynamics, 2003. 452 с.
- Jakubov I.T., Khrapak A.G. // Thermal Phys. Rev. 1989. V. 2. № 4. Р. 269.
- Ichinaru S. // Rev. Modern Phys. 1982. V. 54. № 4. Р. 1017. https://doi.org/10.1103/RevModPhys.54.1017
- Christiansen E.L. Космонавтика и ракетостроение. 2000. № 8.
- Mott P.H., Twigg J.N., Roland D.F., Schrader H.S., Pathak J.A., Roland C.M. // Rev. Sci. Instrum. 2007. V. 78. № 4. Р. 045105. https://doi.org/10.1063/1.2719643
- Gacek S., Wang X. // Appl. Phys. A. 2009. V. 94. P. 675. https://doi.org/10.1007/s00339-008-4958-4
- Harrmann W., Wilbreck J.S. // Int. J. Impact Eng. 1987. V. 5. P. 307. https://doi.org/10.1016/0734-743x(87)90048-0
- Leontyev L.V. // Space Res. 1976. V. 14. P. 278.
- Encyclopedia of the Solar System / Ed. McFaddenL.-A. et al. https://archive.org/details/encyclopediaofthesolarsystem2nded_201909/mode/2up
- Realistic Protection for Spaceships Against Kinetic Projectiles. https://worldbuilding.stackexchange.com/questions/251766/realistic-protection-for-spaceships-against-kinetic-projectiles
- Portree D.S.F., Loftus J.P. Jr. Orbital Debris: A Chronology. NASA/TP-1999-208856, 1999.
- Handbook for Designing MMOD Protection / Ed. Christiansen E.L. et al. JSC-64399, January 28, 2009.155 p.
- Wen K., Chen Z.-W., Lu Y.-G. // Defence Technol. 2021. V. 17. № 6. P. 1864. https://doi.org/10.1016/j.dt.2020.11.005
- Svotina V.V. Spacecraft Protection Against Man-Made and Natural Space Debris Particles // Acta Astronautica. 2024. 225. P. 538–555. https://doi.org/10.1016/j.actaastro.2024.09.053
Supplementary files


