Structural Characteristics of Ceramic Composites ZrO2–20%Al2O3 Obtained by Additive Method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The rapidly developing field of additive manufacturing requires quality control of finished products. In this regard, non-destructive testing methods, in particular X-ray computed microtomography, turned out to be in demand. The paper presents a study of the structure of the ZrO2–20%Al2O3 ceramic composite obtained by the fused deposition modeling method of a thermoplastic suspension consisting of nanostructured powders of the same composition, a binder, and carbon nanotubes. To obtain information about the structure, two-dimensional sections of reconstructed images were analyzed. The anisotropy of the structure was shown and possible causes of the heterogeneity of the pore and grain structure were explained. The information about the structure obtained by X-ray computed tomography will be used in further work to optimize the parameters of the fused deposition modeling technology and optimize the compositions of thermoplastic suspensions.

About the authors

M. V. Korobenkov

Immanuel Kant Baltic Federal University

Email: korobenkovmv@gmail.com
Kaliningrad, Russia

A. S. Narikovich

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

S. S. Lyatun

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

I. I. Lyatun

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

I. S. Zherebtsov

Immanuel Kant Baltic Federal University

Kaliningrad, Russia

M. N. Ulyanov

Chelyabinsk State University

Chelyabinsk, Russia

References

  1. Wu H., Liu W., He R., W. Z., Jiang Q., Song X., Wu S. // Ceram. Int. 2017. V. 43. P. 968. https://doi.org/10.1016/j.ceramint.2016.10.027
  2. Lakhdar Y., Tuck C., Binner J., Terry A., Goodridge R. // Prog. Mater. Sci. 2021. V. 116. P. 100736. https://doi.org/10.1016/j.pmatsci.2020.100736
  3. Zakeri S., Vippola M., Levänen E. // Addit. Manuf. 2020. V. 35. P. 101177. https://doi.org/10.1016/j.addma.2020.101177
  4. Promakhov V.V., Zhukov A.S., Vorozhtsov A.B., Schults N.A., Kovalchuk S.V., Kozhevnikov S.V., Olisov A.V., Klimenko V.A. // Russ. Phys. J. 2019. V. 62. P. 876. https://doi.org/10.1007/s11182-019-01790-0
  5. Korobenkov M., Lebedev M., Promakhov V., Narikovich A. // Materials. 2023. V. 16 (4). P. 1353. https://doi.org/10.3390/ma16041353
  6. Du Plessis A. // J. Microsc. 2022. V. 285. P. 121. https://doi.org/10.1111/jmi.12930
  7. Silva M.I., Malitckii E., Santos T.G., Vilaça P. // Progr. Mater. Sci. 2023. V. 138. P. 101155. https://doi.org/10.1016/j.pmatsci.2023.101155
  8. Wang S., Qu H., Yu S., Zhang S.X. // Mater. Today Proc. 2022. V. 70. P. 124. https://doi.org/10.1016/j.matpr.2022.08.559
  9. Khosravani M.R., Reinicke T. // J. Nondestructive Evaluation. 2020. V. 39. P. 75. https://doi.org/10.1007/s10921-020-00721-1
  10. DebRoy T., Wei H.L., Zuback J.S., Mukherjee T., Elmer J.W., Milewski J.O., Beese A.M., Wilson-Heid A., De A., Zhang W. // Progr. Mater. Sci. 2018. V. 92. P. 112. https://doi.org/10.1016/j.pmatsci.2017.10.001
  11. Honarvar F., Patel S. // J. Mater. Eng. Perform. 2021. V. 30. P. 6766. https://doi.org/10.1007/s11665-021-05988-7
  12. Travitzky N., Bonet A., Dermeik B., Fey T., Filbert-Demut I., Schlier L., Greil P. // Adv. Eng. Mater. 2014. V. 16. P. 729. https://doi.org/10.1002/adem.201400097
  13. Nigay P.M., Cutard T., Nzihou A. // Ceram. Int. 2017. V. 43. P. 1747. https://doi.org/10.1016/j.ceramint.2016.10.084
  14. Bourret J., Tessier-Doyen N., Guinebretiere R., Joussein E., Smith D.S. // Appl. Clay Sci. 2015. V. 116–117. P. 150. https://doi.org/10.1016/j.clay.2015.08.006
  15. Carty W.M., Senapati U. // J. Am. Ceram. Soc. 1998. V. 81. P. 3. https://doi.org/10.1111/j.1151-2916.1998.tb02290.x
  16. Smith D.S., Alzina A., Bourret J., Nait-Ali B., Pennec F., Tessier-Doyen N., Otsu K., Matsubara H., Elser P., Gonzenbach U.T. // J. Mater. Res. 2013. V. 28. P. 2260. https://doi.org/10.1557/jmr.2013.179
  17. Korobenkov M.V., Kulkov S.N. // AIP Conf. Proc. 2016. V. 1760. P. 020033. https://doi.org/10.1063/1.496025
  18. Levkov R.V., Pigaleva N.V., Korobenkov M.V., Kulkov S.N. // J. Phys.: Conf. Ser. 2018. V. 1045. P. 012027. https://doi.org/10.1088/1742-6596/1045/1/012027
  19. Lange F.F. // J. Mater. Sci. 1982. V. 17. P. 225. https://doi.org/10.1007/BF00809057
  20. Yu Q., Zhou C., Zhang H., Zhao F. // J. Eur. Ceram. Soc. 2010. V. 30. P. 889. https://doi.org/10.1016/j.jeurceramsoc.2009.10.005

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).