Piezo-Photocatalytic Decomposition of Metronidazole Using ZnO Microtetrapods under Simulated Sunlight

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents the results of a study on the effect of ultrasonic exposure on the process of photocatalytic decomposition of metronidazole using ZnO microtetrapods under simultaneous irradiation with artificial sunlight. The synthesized zinc oxide microtetrapods had pronounced sharp tips, clear facets, and edges, indicating their high crystalline perfection. This unique morphology of ZnO microtetrapods provides the material with high catalytic activity in both photocatalytic and piezocatalytic processes. The Raman spectrum of ZnO microtetrapods showed distinct peaks corresponding to the transverse E1 and high-frequency E2h modes. The high intensity of the E2h mode indicates the crystalline perfection of ZnO microtetrapods. The enhancement of the intensity of the transverse optical mode A1 is observed at the tip of the tetrapod and is absent at the base. It has been shown that the use of ZnO microtetrapods achieves significant efficiency in the decomposition of metronidazole due to the combined effect of light and ultrasound, creating a piezoelectric field on the surface of ZnO. This piezoelectric field promotes the spatial separation of photogenerated charges and reduces the likelihood of their recombination, significantly increasing the rate of decomposition of the target pollutant. The rate constant for the decomposition of metronidazole in piezophotocatalysis is higher than the rate constants for photolysis, sonolysis, sonophotolysis, piezocatalysis, and photocatalysis by 1254, 35, 17, 8, and 4 times, respectively.

About the authors

R. R. Gulakhmedov

Dagestan State University

Makhachkala, Russia

D. A. Selimov

Dagestan State University

Makhachkala, Russia

V. V. Krasnova

Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

A.V. Shubnikov Institute of Crystallography Moscow, Russia

A. E. Muslimov

Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

Email: amuslimov@mail.ru
A.V. Shubnikov Institute of Crystallography Moscow, Russia

A. S. Larikov

Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

A.V. Shubnikov Institute of Crystallography Moscow, Russia

V. M. Kanevsky

Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”

A.V. Shubnikov Institute of Crystallography Moscow, Russia

M. Kh. Rabadanov

Dagestan State University

Makhachkala, Russia

F. F. Orudzhev

Dagestan State University; Amirkhanov Institute of Physics DFRC RAS

Email: farid-stkha@mail.ru
Makhachkala, Russia; Makhachkala, Russia

References

  1. Sambaza S.S., Naicker N. // Journal of Global Antimicrobial Resistance. 2023. V. 34. P. 23. https://www.doi.org/10.1016/j.jgar.2023.05.010
  2. Liao Y., Ye Y., Chen X., Xin H., Ma S., Lin S., Luo H. // Water Cycle. 2024. V. 5. P. 167. https://www.doi.org/10.1016/j.watcyc.2024.04.002
  3. Ghosh S., Falyouna O., Onyeaka H., Malloum A., Bornman Ch., AlKafaas S.S., Al-Sharify Z.T., Ahmadi Sh., Dehghani M.H., Mahvi A.H., Nasseri S., Tyagi I., Mousazadeh M., Koduru J.R., Khan A.H., Suhas M. // Journal of Water Process Engineering. 2023. V. 51. P. 103405. https://www.doi.org/10.1016/j.jwpe.2022.103405
  4. Orudzhev F.F., Aliev Z.M., Gasanova F.G., Isaev A.B., Shabanov N.S. // Russian Journal of Electrochemistry. 2015. V. 51. P. 1108. https://www.doi.org/10.1134/S1023193515110130
  5. Ong C.B., Ng L.Y., Mohammad A.W. // Renewable and Sustainable Energy Reviews. 2018. V 81. P. 536. https://www.doi.org/10.1016/j.rser.2017.08.020
  6. Zhong B., Li S., Hu J., Yang X., Cai Y., Li C.M., Qu, J. // Journal of Materials Chemistry A. 2023. V. 11. Iss. 42. P. 22608. https://www.doi.org/10.1039/D3TA05125K
  7. Rabadanova A., Abdurakhmanov M., Gulakhmedov R., Shuaibov A., Selimov D., Sobola D., Částková K., Ramazanov Sh., Orudzhev F. // Chimica Techno Acta. 2022. V. 9. Iss. 4. P. 20229420. https://www.doi.org/10.15826/chimtech.2022.9.4.20
  8. Orudzhev F.F., Sobola D.S., Ramazanov Sh.M., Častková K., Selimov D.A., Rabadanova A.A., Shuaibov A.O., Gulakhmedov R.R., Abdurakhmanov M.G., Giraev K.M. // Polymers. 2023. V. 15. Iss. 15. P. 3252. https://www.doi.org/10.3390/polym15153252
  9. Narvaez J.A.B., Mercado C.C. // Journal of Electronic Materials. 2024. P. 1. https://www.doi.org/10.1007/s11664-024-11413-1
  10. Bettini S., Pagano R., Valli D., Ingrosso C., Roeffaers M., Hofkens J., Giancane G., Valli L. // Surfaces and Interfaces. 2023. V. 36. P. 102581. https://www.doi.org/10.1016/j.surfin.2022.102581
  11. Wen Y., Chen J., Gao X., Liu W., Che H., Liu B., Ao Y. // Nano Energy. 2023. V. 107. P. 108173. https://www.doi.org/10.1016/j.nanoen.2023.108173
  12. Sun C., Fu Y., Wang Q., Xing L., Liu B., Xue X. // RSC Adv. 2016. V. 6. Iss. 90. P. 87446. https://www.doi.org/10.1039/C6RA13464E
  13. Orudzhev F., Muslimov A., Selimov D., Gulakhmedov R.R., Lavrikov A., Kanevsky V., Gasimov R., Krasnova V., Sobola D. // International Journal of Molecular Sciences. 2023. V. 24. Iss. 22. P. 16338. https://www.doi.org/10.3390/ijms242216338
  14. Krasnova V.V., Muslimov A.E., Lavrikov A.S., Zadorozhnaya L.A., Orudzhev F.F., Gulakhmedov R.R., Kanevsky V.M. // Crystallography Reports. 2024. V. 69. № 3. P. 439. https://www.doi.org/10.1134/S1063774524600212
  15. Mishra Y.K., Adelung R. // Materials Today. 2018. V. 21. Iss. 6. P. 631. https://www.doi.org/10.1016/j.mattod.2017.11.003
  16. Amaniampong P.N., Jérôme F. // Current opinion in green and sustainable chemistry. 2020. V. 22. P. 7. https://www.doi.org/10.1016/j.cogsc.2019.11.002
  17. Кобунова Е.А., Центер И.М., Матафонова Г.Г., Батоев В.Б. // Вода: химия и экология. 2024. № 4. С. 52.
  18. Исаев А.Б., Магомедова Г.А., Алиев З.М. // Журнал физической химии. 2011. Т. 85. № 11. С. 2184.
  19. Родионов И.А., Зверева И.А. // Успехи химии. 2016. Т. 85. № 3. С. 248.
  20. Konishi A., Ogawa T., Fisher C.A.J., Kuwabara A., Shimizu T., Yasui S., Itoh M., Moriwake H. // Applied Physics Letters. 2016. V. 109. Iss. 10. P. 102903. https://www.doi.org/10.1063/1.4962440
  21. Goel S., Kumar B. // Journal of Alloys and Compounds. 2019. P. 152491. https://www.doi.org/10.1016/j.jallcom.2019.152491

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).