Method for Rapid Fabrication of Silicon Dioxide X-ray Microoptics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An approach to rapid (in less than 1 h) prototyping of X-ray microlenses from silica with an aperture of about 50 μm and a radius of curvature of 10 μm is presented. The formation of a concave microlens surface is achieved by using focused ion beam systems and isotropic etching in hydrofluoric acid. The presented approach allows obtaining a gain in the fabrication time by about 10 times compared to ion-beam lithography. Furthermore, the fabrication of a series of lenses will lead to a reduction in time costs proportional to the number of simultaneously processed lenses in an acid solution.

About the authors

I. I. Lyatun

International Research Center “Coherent X-ray Optics for Megascience Facilities”, Immanuel Kant Baltic Federal University

Email: ivanlyatun@gmail.com
Kaliningrad, Russia

S. S. Lyatun

International Research Center “Coherent X-ray Optics for Megascience Facilities”, Immanuel Kant Baltic Federal University

Kaliningrad, Russia

A. A. Snigirev

International Research Center “Coherent X-ray Optics for Megascience Facilities”, Immanuel Kant Baltic Federal University

Kaliningrad, Russia

References

  1. Roth T., Alianelli L., Lengeler D., Snigirev A., Seiboth F. // MRS Bull. 2017. V. 42. № 6. P. 430. https://doi.org/10.1557/mrs.2017.117
  2. Snigireva I., Polikarpov M., Snigirev A. // Synchrotron Radiat. News. 2021. V. 34. Iss. 6. P. 1. https://doi.org/10.1080/08940886.2021.2022387
  3. Kovalchuk M., Blagov A. // Crystallogr. Rep. 2022. V. 67. № 5. P. 631. https://doi.org/10.1134/s1063774522050066
  4. Polikarpov M., Bosak A., Snigireva I., Snigirev A., Roth T., Schoonover R., Forquin F., Hignette O., Zvereva A. // Proc. SPIE. 2019. V. 11113. P. 1111307. https://doi.org/10.1117/12.2534688
  5. Shabalin A., Lazarev S., Stolyrov P., Yaremko A., Yurkov G., Chuvilin A., Lazareva E., Grigoriev S. // Phys. Rev. Lett. 2016. V. 117. № 13. P. 138002. https://doi.org/10.1103/PhysRevLett.117.138002
  6. Snigirev A., Kohn V., Snigireva I., Lengeler B. // Nature. 1996. V. 384. № 6604. P. 49. https://doi.org/10.1038/384049a0
  7. Medvedskaya P., Lyatun I., Shevyrtalov S., Polikarpov M., Snigireva I., Yunkin V., Snigirev A. // Opt. Express. 2020. V. 28. № 4. P. 4773. https://doi.org/10.1364/OE.384647
  8. Snigireva I., Irifune T., Shinmei T., Medvedskaya P., Shevyrtalov S., Bourenkov G., Polikarpov M., Rashchenko S., Snigirev A., Lyatun I. // Proc. SPIE. 2021. V. 11837. P. 1183703. https://doi.org/10.1117/12.2594675
  9. Sanli U.T., Rodgers G., Zdora MC. et al. // Light Sci. Appl. 2023. V. 12. № 1. P. 107. https://doi.org/10.1038/s41377-023-01157-8
  10. Li P., Allain M., Grünewald T.A. et al. // Light Sci. Appl. 2022. V. 11. № 1. P. 73. https://doi.org/10.1038/s41377-022-00759-w
  11. Medvedskaya P., Lyatun I., Golubenko K., Yunkin V., Snigireva I., Snigirev A. // Proc. SPIE. 2021. V. 11776. P. 117760I. https://doi.org/10.1117/12.2589310
  12. Giannuzzi L.A. // Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. Springer Science & Business Media, 2004. https://doi.org/10.1007/b1011
  13. Utke I., Hoffmann P., Melngailis J. // J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 2008. V. 26. № 4. P. 1197. https://doi.org/10.1116/1.2955728
  14. Langford R.M., Stokes D.J., Elliott S.L., Wang L. // MRS Bull. 2007. V. 32. № 5. P. 417. https://doi.org/10.1557/mrs2007.65
  15. Matsui S., Misawa H., Sun Q. // 3-D nanostructure fabrication by focused-ion beam, electron-and laser beam. Springer Handb. Nanotechnol. Springer, 2017. P. 87. https://doi.org/10.1007/978-3-662-54357-3_4
  16. Serebrennikov D., Clementyev E., Semenov A., Snigirev A. // J. Synchrotron Radiat. 2016. V. 23. № 6. P. 1315. https://doi.org/10.1107/S1600577516014508
  17. Engelhardt S. // Direct Laser Writing. Laser Technology in Biomimetics: Basics and Applications. Springer, 2014. P. 13. https://doi.org/10.1007/978-3-642-41341-4_2
  18. Bitterli R., Scharf T., Herzig H.P., Noell W., de Rooij N., Bich A., Roth S., Weible K.J., Voelkel R., Zimmermann M., Schmidt M. // Opt. Express. 2010. V. 18. № 13. P. 14251. https://doi.org/10.1364/OE.18.014251
  19. Bian H., Yang Q., Chen F., Liu H., Du G., Deng Z., Si J., Yun F., Hou X. // Mater. Sci. Eng. C. 2013. V. 33. № 5. P. 2795. https://doi.org/10.1016/j.msec.2013.02.048
  20. Konstantinova T.G., Andronic M.M., Baklykov D.A., Stukalova V.E., Ezenkova D.A., Zikiy E.V., Bashinova M.V., Solovev A.A., Lotkov E.S., Ryzhikov L.A., Rodionov I.A. // Sci. Rep. 2023. V. 13. № 1. P. 5228. https://doi.org/10.1038/s41598-023-32503-w
  21. Kim K., Jang K.W., Ryu J.K., Jeong K.H. // Light Sci. Appl. 2020. V. 9. № 1. P. 28. https://doi.org/10.1038/s41377-020-0261-8
  22. Kong D., Sun X., Zhang L., Hu Y., Duan J.A. // Appl. Phys. A. 2024. V. 130. № 2. P. 79. https://doi.org/10.1007/s00339-023-07222-8
  23. Berger C., Dumoux M., Glen T. et al. // Nat. Commun. 2023. V. 14. № 1. P. 629. https://doi.org/10.1038/s41467-023-36372-9
  24. Monk D.J., Soane D.S., Howe R.T. // J. Electrochem. Soc. 1993. 1993. V. 140. № 8. P. 2339. https://doi.org/10.1149/1.2220822

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).