Measurement of Quantum Efficiency of Photocathodes in the Photon Energy Range 40–100 keV

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of a study on the quantum yield of various photocathodes designed to detect X-ray radiation with an energy above 40 keV are presented. Experiments have been conducted with photocathode samples made of CsI, LaB6, CdWO4 and ZnWO4 using synchrotron radiation from the wiggler at the VEPP-4M accelerator. These materials have been chosen due to their high atomic numbers Z, which ensures effective interaction with X-rays through the photoelectric effect. The study has been carried out in the energy range 40–100 keV, which corresponds to the conditions of experiments on fast-flowing physical processes requiring high temporal and spatial resolution. The data obtained allow us to determine the most suitable materials for creating effective photocathodes in electron-optical converters for recording fast physical processes.

About the authors

N. S. Vorobiev

Prokhorov General Physics Institute RAS

Moscow, Russia

O. I. Meshkov

Budker Institute of Nuclear Physics SB RAS; Novosibirsk State University

Novosibirsk, Russia; Novosibirsk, Russia

N. I. Razumov

Novosibirsk State University; Institute of Solid State Chemistry and Mechanochemistry SB RAS

Email: razumov.kolya@mail.ru
Novosibirsk, Russia; Novosibirsk, Russia

S. V. Reva

Budker Institute of Nuclear Physics SB RAS

Novosibirsk, Russia

B. P. Tolochko

Novosibirsk State University; Institute of Solid State Chemistry and Mechanochemistry SB RAS

Novosibirsk, Russia; Novosibirsk, Russia

E. V. Shashkov

Prokhorov General Physics Institute RAS

Moscow, Russia

References

  1. Habbell J.H.//Phys. Med. Biol. 2006. V.51. P. R245. http://doi.org/10.1088/0031-9155/51/13/R15
  2. Han M.C., Kim H.S., Pia M.G., Basaglia T., Batic M., Hoff G., Kim C.H., Saracco P. // IEEE Trans. Nucl. Sci. 2016. V. 63. № 2. P. 1117. https://doi.org/10.1109/TNS.2016.2521876
  3. Davisson C.M. Interaction of Gamma-Radiation with Matter // Alpha-, Beta- and Gamma-ray Spectroscopy / Ed. Siegbahn K. Amsterdam: North-Holland Publishing Company, 1965. Vol. 1.
  4. https://www.esrf.fr/UsersAndScience/Experiments/StructMaterials/ID11/ID11UserGuide/ID11Edges (дата обращения: 04.04.2025).
  5. Hubbell J.H., Veigele J. Comparison of Theoretical and Experimental Photoeffect Data from 0.1 keV to 1.5 MeV. NBS Technical Note 901. U.S. Department of Commerce. National Bureau of Standards. Washington, D.C. 20234, April 1976. https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote901.pdf
  6. Scheidt K. Review of Streak Cameras for Accelerators: Features, Applications and Results // Proc. 7th Eur. Particle Accelerator Conf. (EPAC 2000). Vienna, Austria, June 26–30, 2000. Vol. 1–3. P. 182.
  7. Zhao Y.K., Jin S.S., Lu P., Sun B.G., Wang J.G., Wu F.F., Zhou T.Y. Application and Development of the Streak Camera Measurement System at HLS-II // Proc. Int. Part. Accel. Conf. (IPAC’21), Shanghai, China, Aug. 10, 2021. P. TUPAB222. https://doi.org/10.18429/JACoW-IPAC2021-TUPAB222
  8. Schiwietz G., Koopmans M., Kalus Ch., Marongiu M., Schaelicke A., Schnizer P., Ries M. // Nucl. Instrum. Methods Phys. Res. A. 2024. V. 1062. P. 169196. https://doi.org/10.1016/j.nima.2024.169196
  9. Верещагин А.К., Воробьев Н.С., Горностаев П.Б., Дорохов В.Л., Крюков С.С., Лозовой В.И., Мешков О.И., Никифоров Д.А., Смирнов А.В., Шашков Е.В., Щелев М.Я. // Квантовая электроника. 2016. Т. 46. № 2. С. 185. https://doi.org/10.1070/qel15899
  10. Schelev M.Ya. // Phys.-Uspekhi. 2000. V. 43. № 9. P. 931. https://doi.org/10.1070/PU2000v043n09ABEH000810
  11. Hamamatsu Photometry Systems: Streak Camera. https://www.hamamatsu.com/eu/en/product/photometry-systems/streak-camera.html (accessed: 04.04.2025).
  12. Комплекс измерений временных характеристик быстропротекающих процессов https://www.vniiofi.ru/depart/r5/k-010.html (дата обращения: 04.04.2025).
  13. Воробьев Н.С., Шашков Е.В., Калмыков В.М., Чалкин С.Ф. // Качество и жизнь. 2023. № 2 (38). С. 92. https://doi.org/10.34214/2312-5209-2023-38-2-92-96
  14. Abstracts of International Research Workshop “Generation and Application of Ultrashort X-ray Pulses”. Salamanca, Spain, March 1994.
  15. Henke B.B., Knauer J.P., Premarathe K. // J. Appl. Phys. 1981. V. 59. P. 1509. https://doi.org/10.1063/1.329789
  16. Воробьев Н.С., Горностаев П.Б., Лозовой В.И., Смирнов А.В., Щелев М.Я., Шашков Е.В. // Приборы и техника эксперимента. 2016. № 4. С. 72. https://doi.org/10.7868/S0032816216030289
  17. Hara T., Tanaka Y., Kitamura H., Ishikawa T. // Rev. Sci. Instrum. 2000. V. 71. № 10. P. 3624. https://doi.org/10.1063/1.1311935
  18. Tolochko B.P., Zolotarev K.V. // J. Struct. Chem. 2016. V. 57. P. 1288. https://doi.org/10.1134/S0022476616070027
  19. Piminov P.A., Baranov G.N., Bogomyagkov A.V., Berkaev D.E., Borin V.M., Dorokhov V.L., Karnaukhov S.E., Kiselev V.A., Levichev E.B., Meshkov O.I., Misheva S.I., Nikitin S.A., Nikolaev I.B., Sinyatkin S.V., Vobly P.D., Zolotarev K.V., Zhuravlev A.N. // Phys. Proc. 2016. V. 84. P. 19. https://doi.org/10.1016/j.phpro.2016.11.005
  20. Багров В.Г., Бисноватый-Коган Г.С., Бордовицын В.А., Борисов А.В. Теория излучения релятивистских частиц. М.: ФИЗМАТЛИТ, 2002. 576 с.
  21. SRW Software. https://www.esrf.fr/Accelerators/Groups/InsertionDevices/Software/SRW (accessed: 04.04.2025).
  22. Schwinger’s Variation Calculation Method. https://physics.nist.gov/MajResFac/SURF/SURF/schwinger.html (accessed: 04.04.2025).
  23. Feikes J., von Hartrott M., Ries M., Schmid P., Wüstefeld G., Hoehl A., Klein R., Müller R., Ulm G. // Phys. Rev. Accel. Beams. 2011. V. 14. Iss. 3. Р. 030705. https://doi.org/10.1103/PhysRevSTAB.14.030705

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).