Structural Characterization of Copper Centers in Mordenite-Type Zeolite at the Oxygen Activation Stage

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Copper-containing zeolites are promising catalysts for the reaction of direct oxidation of methane to methanol. In this work, the structure of copper active centers in mordenite-type zeolites prepared by aqueous ion exchange was investigated using X-ray absorption near edge structure XANES and computer modelling. Calculations of theoretical Cu K-XANES spectra were performed for a set of models of active copper centers containing one, two, or three copper atoms. The main problem is the difficulty in defining the local atomic structure of copper centers, which are unevenly distributed in the zeolite framework and largely determine the catalytic properties of the material. In order to describe the experimental Cu K-XANES spectra corresponding to the oxygen activation stage at a temperature of 200°C, it is necessary to take into account the superposition of models of copper and copper oxide centers. The most probable local atomic environment of copper at the considered stage of the catalytic cycle in the studied material was determined. The results obtained are important for establishing the relationship between the structure and catalytic properties of mordenite-type zeolites, as well as for the development of new efficient catalysts.

About the authors

A. M. Ermakova

Southern Federal University

Email: ermakova.alexandra.bk@mail.ru
Rostov-on-Don, Russia

G. B. Sukharina

Southern Federal University

Email: gbsukharina@sfedu.ru
Rostov-on-Don, Russia

Ya. N. Gladchenko-Djevelekis

Southern Federal University

Rostov-on-Don, Russia

K. D. Kulaev

Southern Federal University

Rostov-on-Don, Russia

V. V. Pryadchenko

Southern Federal University

Rostov-on-Don, Russia

E. E. Lysenko

Southern Federal University

Rostov-on-Don, Russia

A. S. Babayants

Southern Federal University

Rostov-on-Don, Russia

L. A. Avakyan

Southern Federal University

Rostov-on-Don, Russia

L. A. Bugaev

Southern Federal University

Rostov-on-Don, Russia

References

  1. Räuchle K., Plass L., Wernicke H., Bertau M. // Energy Technol. 2016. V. 4. № 1. P. 193. https://www.doi.org/10.1002/ente.201500322
  2. Tomkins P., Ranocchiari M., van Bokhoven J.A. // Acc. Chem. Res. 2017. V. 50. № 2. P. 418. https://www.doi.org/10.1021/acs.accounts.6b00534
  3. Müller K., Fabisch F., Arlt W. // Green. 2014. V. 4. № 1–6. https://www.doi.org/10.1515/green-2013-0028
  4. Schüth F. // Chemie Ing. Tech. 2011. V. 83. № 11. P. 1984. https://www.doi.org/10.1002/cite.201100147
  5. Groothaert M.H., Smeets P.J., Sels B.F., Jacobs P.A., Schoonheydt R.A. // J. Am. Chem. Soc. 2005. V. 127. № 5. P. 1394. https://www.doi.org/10.1021/ja047158u
  6. Smeets P.J., Groothaert M.H., Schoonheydt R.A. // Catal. Today. 2005. V. 110. № 3–4. P. 303. https://www.doi.org/10.1016/j.cattod.2005.09.028
  7. Beznis N. V., Weckhuysen B.M., Bitter J.H. // Catal. Lett. 2010. V. 138. № 1–2. P. 14. https://www.doi.org/10.1007/s10562-010-0380-6
  8. Ravi M., Sushkevich V.L., Knorpp A.J., Newton M.A., Palagin D., Pinar A.B., Ranocchiari M., van Bokhoven J.A. // Nat. Catal. 2019. V. 2. № 6. P. 485. https://www.doi.org/10.1038/s41929-019-0273-z
  9. Alayon E.M., Nachtegaal M., Ranocchiari M., van Bokhoven J.A. // Chem. Commun. 2012. V. 48. № 3. P. 404. https://www.doi.org/10.1039/C1CC15840F
  10. Yousefzadeh H., Bozbag S.E., Erkey C. // J. Supercrit. Fluids. 2022. V. 179. P. 105417. https://www.doi.org/10.1016/j.supflu.2021.105417
  11. Sushkevich V.L., Smirnov A.V., van Bokhoven J.A. // J. Phys. Chem. C. 2019. V. 123. № 15. P. 9926. https://www.doi.org/10.1021/acs.jpcc.9b00986
  12. Dinh K.T., Sullivan M.M., Serna P., Meyer R.J., Dincă M., Román-Leshkov Y. // ACS Catal. 2018. V. 8. № 9. P. 8306. https://www.doi.org/10.1021/acscatal.8b01180
  13. Alayon E.M.C., Nachtegaal M., Bodi A., Ranocchiari M., van Bokhoven J.A. // Phys. Chem. Chem. Phys. 2015. V. 17. № 12. P. 7681. https://www.doi.org/10.1039/C4CP03226H
  14. Kulkarni A.R., Zhao Z.-J., Siahrostami S., Nørskov J.K., Studt F. // Catal. Sci. Technol. 2018. V. 8. № 1. P. 114. https://www.doi.org/10.1039/C7CY01229B
  15. Bozbag S.E., Alayon E.M.C., Pecháček J., Nachtegaal M., Ranocchiari M., van Bokhoven J.A. // Catal. Sci. Technol. 2016. V. 6. № 13. P. 5011. https://www.doi.org/10.1039/C6CY00041J
  16. Palagin D., Sushkevich V.L., van Bokhoven J.A. // ACS Catal. 2019. V. 9. № 11. P. 10365. https://www.doi.org/10.1021/acscatal.9b02702
  17. Pappas D.K., Borfecchia E., Dyballa M., Pankin I.A., Lomachenko K.A., Martini A., Signorile M., Teketel S., Arstad B., Berlier G., Lamberti C., Bordiga S., Olsbye U., Lillerud K.P., Svelle S., Beato P. // J. Am. Chem. Soc. 2017. V. 139. № 42. P. 14961. https://www.doi.org/10.1021/jacs.7b06472
  18. Álvarez M., Marín P., Ordóñez S. // Mol. Catal. 2020. V. 487. P. 110886. https://www.doi.org/10.1016/j.mcat.2020.110886
  19. Smeets P.J., Woertink J.S., Sels B.F., Solomon E.I., Schoonheydt R.A. // Inorg. Chem. 2010. V. 49. № 8. P. 3573. https://www.doi.org/10.1021/ic901814f
  20. Li J., Corma A., Yu J. // Chem. Soc. Rev. 2015. V. 44. № 20. P. 7112. https://www.doi.org/10.1039/C5CS00023H
  21. Vanelderen P., Vancauwenbergh J., Sels B.F., Schoonheydt R.A. // Coord. Chem. Rev. 2013. V. 257. № 2. P. 483. https://www.doi.org/10.1016/j.ccr.2012.07.008
  22. Park M.B., Ahn S.H., Mansouri A., Ranocchiari M., van Bokhoven J.A. // Chem. Cat. Chem. 2017. V. 9. № 19. P. 3705. https://www.doi.org/10.1002/cctc.201700768
  23. Knorpp A.J., Pinar A.B., Newton M.A., Sushkevich V.L., van Bokhoven J.A. // Chem. Cat. Chem. 2018. V. 10. № 24. P. 5593. https://www.doi.org/10.1002/cctc.201801809
  24. Kvande K., Pappas D.K., Dyballa M., Buono C., Signorile M., Borfecchia E., Lomachenko K.A., Arstad B., Bordiga S., Berlier G., Olsbye U., Beato P., Svelle S. // Catalysts. 2020. V. 10. № 2. P. 191. https://www.doi.org/10.3390/catal10020191
  25. Zhu D., Zaffalon M.L., Pinchetti V., Brescia R., Moro F., Fasoli M., Fanciulli M., Tang A., Infante I., De Trizio L., Brovelli S., Manna L. // Chem. Mater. 2020. V. 32. № 13. P. 5897. https://www.doi.org/10.1021/acs.chemmater.0c02017
  26. Alayon E.M.C., Nachtegaal M., Kleymenov E., van Bokhoven J.A. // Microporous Mesoporous Mater. 2013. V. 166. P. 131. https://www.doi.org/10.1016/j.micromeso.2012.04.054
  27. Grundner S., Markovits M.A.C., Li G., Tromp M., Pidko E.A., Hensen E.J.M., Jentys A., Sanchez-Sanchez M., Lercher J.A. // Nat. Commun. 2015. V. 6. № 1. P. 7546. https://www.doi.org/10.1038/ncomms8546
  28. Sushkevich V.L., Palagin D., Ranocchiari M., van Bokhoven J.A. // Science. 2017. V. 356. № 6337. P. 523. https://www.doi.org/10.1126/science.aam9035
  29. Lee S.H., Kang J.K., Park E.D. // Korean J. Chem. Eng. 2018. V. 35. № 11. P. 2145. https://www.doi.org/10.1007/s11814-018-0150-5
  30. Woertink J.S., Smeets P.J., Groothaert M.H., Vance M.A., Sels B.F., Schoonheydt R.A., Solomon E.I. // Proc. Natl. Acad. Sci. 2009. V. 106. № 45. P. 18908. https://www.doi.org/10.1073/pnas.0910461106
  31. Joly Y. // Phys. Rev. B. 2001. V. 63. № 12. P. 125120. https://www.doi.org/10.1103/PhysRevB.63.125120
  32. Srabionyan V.V., Sukharina G.B., Kurzina T.I., Durymanov V.A., Ermakova A.M., Avakyan L.A., Alayon E.M.C., Nachtegaal M., van Bokhoven J.A., Bugaev L.A. // J. Phys. Chem. C. 2021. V. 125. № 46. P. 25867. https://www.doi.org/10.1021/acs.jpcc.1c08240
  33. Pryadchenko V.V., Sukharina G.B., Ermakova A.M., Bazovaya S.V., Kurzina T.I., Durymanov V.A., Tolstopyatenko V.A., Srabionyan V.V., Avakyan L.A., Bugaev L.A. // Tech. Phys. 2021. V. 66. № 9. P. 1018. https://www.doi.org/10.1134/S1063784221070124
  34. Srabionyan V.V., Sukharina G.B., Kaptelinin S.Y., Durymanov V.A., Ermakova A.M., Kurzina T.I., Avakyan L.A., Bugaev L.A. // Phys. Solid State. 2020. V. 62. № 7. P. 1222. https://www.doi.org/10.1134/S1063783420070252
  35. Gladchenko-Djevelekis Ya.N., Sukharina G.B., Ermakova A.M., Kulaev K.D., Pryadchenko V.V., Ponosova E.E., Shemetova E.I., Avakyan L.A., Bugaev L.A. // Tech. Phys. 2024. V. 69. № 4. P. 586. https://www.doi.org/10.61011/JTF.2024.04.57533.287-23

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).