Multilayer Structures Based on NiMo/C for Goebel Type Mirrors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reflective and structural characteristics of a multilayer Ni(80)Mo(20)/C system, which is promising for the manufacture of Goebel mirrors and suppression of the CuKβ emission line (λ = 0.139 nm), have been studied for the first time. The optimal ratio of Ni(80)Mo(20) and C materials has been determined to achieve the best reflectivity at a wavelength of λ = 0.154 nm (CuKα1 emission line). The reflection coefficient for periods d = 41.5 and 33.5 Å was R ≥ 69%. The positive effect of vacuum annealing of the Ni(80)Mo(20)/C structure, consisting in an increase in the first-order reflection coefficient, has been shown. The increase in reflectivity could be due to a decrease in the thickness of the transition regions and the “decompression” of the carbon layers, which is accompanied by an increase in the thickness of these layers, and an increase in the X-ray optical contrast at the interfaces. It has been found that vacuum annealing of the multilayer Ni(80)Mo(20)/C structure at temperatures up to 320°C does not significantly affect the distribution of local radiation grazing angles over the substrate area.

About the authors

K. V. Durov

Institute for Physics of Microstructures RAS

Email: zevs2801@mail.ru
Nizhny Novgorod, Russia

V. N. Polkovnikov

Institute for Physics of Microstructures RAS

Nizhny Novgorod, Russia

N. I. Chkhalo

Institute for Physics of Microstructures RAS

Nizhny Novgorod, Russia

A. D. Akhsakhalyan

Institute for Physics of Microstructures RAS

Nizhny Novgorod, Russia

References

  1. Schuster M., Göbel H. // J. Phys. D. 1995. V. 28. № 4A. P. A270. https://doi.org/10.1088/0022-3727/28/4A/053
  2. Schuster M., Göbel H. // J. Phys. D. 1996. V. 29. № 6. P. 1677. https://doi.org/10.1088/0022-3727/29/6/039
  3. Michaelsen C., Wiesmann J., Hoffmann C., Wulf K., Brügemann L., Storm A. // Proc. SPIE. 2002. V. 4782. P. 143. https://doi.org/10.1117/12.469363
  4. Holz T., Dietsch R., Mai H., Brügemann L., // Materials Science Forum. 2000. V. 321-324. P. 179. https://doi.org/10.4028/www.scientif ic.net/MSF.321-324.179
  5. Ахсахалян А.Д., Володин Б.А., Клюенков Е.Б., Муравьев В.А., Салащенко Н.Н., Харитонов А.И., Шамов Е.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2000. № 1. С. 112.
  6. Akhsakhalyan A.D., Kluenkov E.B., Lopatin A.Ya., Luchin V.I., Nechay A.N., Pestov A.E., Polkovnikov V.N., Salashchenko N.N., Svechnikov M.V., Toropov M.N., Tsybin N.N., Chkhalo N.I., Shcherbakov A.V. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2017. V. 11. № 1. P. 1. https://doi.org/10.1134/S1027451017010049
  7. Michaelsen C., Ricardo P., Anders D., Schuster M., Schilling J., Göbel H. // Advances in X-ray Analysis. 2000. V 42. P. 308.
  8. Windt D.L., Christensen F.E., Craig W.W., Hailey C., Harrison F.A., Jimenez-Garate M., Kalyanaraman R., Mao. P.H. // J. Appl. Phys. 2000. V. 88. № 1. P. 460. https://doi.org/10.1063/1.373681
  9. Reunov D.G., Akhsakhalyan A.A., Akhsakhalyan A.D., Chkhalo N.I., Shaposhnikov R.A., Drozdov Yu.N. // J. Appl. Crystallogr. 2024. V. 57. P. 925. https://doi.org/10.1107/S1600576724004126
  10. Andreev A.V., Michette A.G., Renwick A. // J. Modern Opt. 1988. V. 35. № 10. P. 1667.
  11. Kovalenko N.V., Mytnichenko S.V., Chernov V.A. // Journal of Experimental and Theoretical Physics. 2003. V. 97. № 6. P. 1201. https://doi.org/10.1134/1.1641902
  12. Henke B.L., Gullikson E.M., Davis J.C. // Atomic Data and Nuclear Data Tables. 1993. V. 54. № 2. P. 181. https://doi.org/10.1006/adnd.1993.1013
  13. Дуров К.В., Полковников В.Н., Чхало Н.И., Ахсахалян А.А., Малышев И.В. // Журн. тех. физики. 2024. Т. 94. Вып. 8. С. 1280. http://journals.ioffe.ru/articles/viewPDF/58555
  14. Svechnikov M. // J. Appl. Crystallogr. 2024. V. 57. P. 848. https://doi.org/10.1107/S1600576724002231
  15. Takenaka H., Kawamura T., Kinoshita H. // Thin Solid Films. 1996. V. 288. P. 99. https://doi.org/10.1016/S0040-6090(96)08837-2
  16. Cilia M., Verhoeven J. // J. Appl. Phys. 1997. V. 82. P. 4137. https://doi.org/10.1063/1.366213
  17. Borchers C., Ricardo P., Michaelsen C. // Philosophical Magazine A. 2000. V. 80. № 7. P. 1669. https://doi.org/10.1080/01418610008212143
  18. Kovacs-Mezei R., Krist Th., Revay Zs. // Nucl. Instrum. Methods Phys. Res. A. 2008. V. 586. № 1. P. 51. https://doi.org/10.1016/j.nima.2007.11.034
  19. Kolevatov R., Schanzer C., Böni P. // Nucl. Instrum. Methods Phys. Res. A. 2019. V. 922. P. 98. https://doi.org/10.1016/j.nima.2018.12.069
  20. Schebetov A. // Neutron News. 1998. V. 9. № 3. P. 35. https://doi.org/10.1080/10448639808233462
  21. Schebetov A., Kovalev A., Peskov B., Pleshanov N., Pusenkov V., Schubert-Bischoff P., Shmelev G., Soroko Z., Syromyatnikov V., Ul’yanov V., Zaitsev A. // Nucl. Instrum. Methods Phys. Res. A. 999. V. 432. № 2–3. P. 214. https://doi.org/10.1016/S0168-9002(99)00480-5
  22. Khan M.R., Felcher G.P., Schuller I.K. // Phys. Rev. B. 1986. V. 34. № 3. P. 1643. https://doi.org/10.1103/PhysRevB.34.1643
  23. Krawietz R., Wehner B., Meyer D., Richter K., Mai H., Dietsch R., Hopfe S., Scholz R., Pompe W. // Fresenius J Anal Chem. 1995. V. 353. P. 246. https://doi.org/10.1007/s0021653530246

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).