Modeling the Process of Deposition of Erosion Products on the Walls of the Gas-Discharge Chamber of an Ion Thruster

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of contamination of the inner surface of the gas-discharge chamber of a high-frequency ion thruster with sputtered material of the accelerating electrode is considered. A physical and mathematical model of electrode surface sputtering by secondary ions is formulated using the sputtering indicatrix. The motion of sputtered atoms through the flow of primary beam particles is considered, and the conditions for the penetration of sputtered material into the plasma of the gas-discharge chamber are determined. The motion of impurity atoms through the gas-discharge plasma is considered taking into account the possibility of impurity ionization. It is also assumed that all impurity atoms reaching the chamber surface are condensed. Numerical modeling of surface contamination for a spherical gas-discharge chamber using carbon and titanium as the material of the accelerating electrode of the ion-optical system is performed, regardless to the chamber material. The angular distribution of particles penetrating the chamber is obtained, and the maximum velocity and localization of particle deposition on the surface of the gas-discharge chamber are estimated. The results are in satisfactory agreement with published experimental data.

About the authors

M. V. Cherkasova

Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (National Research University)

Email: maria-post@mail.ru
Moscow, Russia

References

  1. Tartz M., Hartmann E., Neumann N. // 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, Florida, 11–14 July, 2004. AIAA-2004-3787. https://doi.org/10.2514/6.2004-3787
  2. Leiter H.J., Kukies R., Killinger R., Bonelli E., Scaranzin S., Scortecci F., Neumann H., Tartz M. // 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit. Cincinnati, July 08–11, 2007. AIAA-2007-5198. https://doi.org/10.2514/6.2007-5198
  3. Wirz R.E., Anderson J., Goebel D.M., Katz I.J. // IEEE Trans. Plasma Sci. 2008. V. 36. № 5. P. 2122. https://doi.org/10.1109/TPS.2008.2001041
  4. Goebel D., Katz I. Fundamental of Electric Propulsion: Ion and Hall Thrusters. JPL Space and Technology Series. 2008. 486 p. https://doi.org/10.1002/9780470436448.ch5
  5. Goebel D.M., Polk J.E., Sandler I., Mikellides I.G., Brophy J.R., Tighe W.G., Chien K.-R. // 31st Int. Electric Propulsion Conf. Ann Arbor, Michigan. September 20–24, 2009. IEPC-2009-152. https://electricrocket.org/IEPC/IEPC-2009-152.pdf
  6. Bundesmann C., Tartz M., Scholze F., Neumann H., Leiter H.J., Scortecci F., Feili D., Frigot P., Gonzalez del Amo J. // 31st Int. Electric Propulsion Conf. Ann Arbor, Michigan. September 20–24, 2009. IEPC-2009-160. https://electricrocket.org/IEPC/IEPC-2009-141.pdf
  7. Miyasaka T., Kobayashi T., Asato K. // Trans. Jpn Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2010. V. 8. № 27. P. Pb 61. https://doi.org/10.2322/TASTJ.8.PB_61
  8. Li J., Qiu J., Chu Y., Zhang T., Meng W., Jia Y., Liu X. // Int. J. Mech. Aerosp. Industr. Mechatron Eng. 2015. V. 9. № 11. P. 1989.
  9. Sangregorio M., Xie K., Wang N., Guo N., Zhang Z. // Chin. J. Aeron. 2018. V. 31. № 8. P. 1635. https://doi.org/10.1016/j.cja.2018.06.005
  10. Power J.L. Sputter Erosion and Deposition in the Discharge Chamber of a Small Mercury Ion Thruster // NASA_NTRS_Archive_19730023878. 1973. https://doi.org/10.2514/6.1973-1109
  11. Satori S., Hirakawa M., Shimizu Y., Toki K., Kuninaka H., Kuriki K. // Proc. 21st Int. Symp. on Space Techn. and Sci. 1998. V. 98 № a2-13. P. 1.
  12. Satori S., Kuninaka H. // J. Jpn Soc. Aeron. Space Sci. 1999. V. 46. P. 648. https://doi.org/10.2322/JJSASS1969.46.648
  13. Shirakawa R., Yamashita Y., Koda D., Tsukizaki R., Shimizu Y., Tagawa M., Nishiyama K. // Acta Astronautica. 2020. № 174. P. 376. https://doi.org/10.1016/j.actaastro.2020.05.004
  14. Dietz P., Reeh A., Keil K., Holste K., Probst U., Klar P.J., Volkmar C. // EPJ Tech. Instrum. 2021. V. 8. № 10. Р. 31. https://doi.org/10.1140/epjti/s40485-021-00068-5
  15. Forrester A.T. Large Ion Beams, Fundamentals of Generation and Propagation. Hoboken: John Wiley and Sons Inc., 1987. 325 p.
  16. Rapp D., Francis W.E. // J. Chem. Phys.1962. V. 37. № 11. Р. 2631.
  17. Hasted J.B., Phil D. Physics of Atomic Collisions. London: Butter Worths, 1964. 539 p.
  18. Abgaryan V.K., Akhmetzhanov R.V., Loeb Y.W., Obukhov V.A., Cherkasova M.V. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2013. V. 7. № 6. Р. 1092. https://doi.org/10.1134/S1027451013060037
  19. Allas R.G., Knudson A.R., Lambert J.M., Treado P.A., Reynolds G.W // Nucl. Instrum. Methods. 1982. V. 194. Р. 615. https://doi.org/10.1016/0029-554X(82)90592-4
  20. Yalin P., Rubin B., Domingue S.R., Glueckert Z., Williams J.D. // AIAA 2007-5314. https://doi.org/10.2514/6.2007-5314
  21. Zhang L., Zhang L.Z. // Radiat. Eff. Defects Solids. 2005. V. 160. № 8. Р. 337. https://doi.org/10.1080/10420150500396803
  22. Becker R. Modeling of Extraction of Positive Ions from Plasma. IGUN (1997–2011). Jacksonville. Florida. USA. URL: http://www.egun-igun.com/
  23. Zigmund P. // Sputtering by Particle Bombardment 1 / Ed. Behrisch R. Berlin: Springer, 1981. Р. 23.
  24. Eckstein W. // Sputtering by Particle Bombardment. Vacuum. 2007. V. 82 № 9. Р. 33. https://doi.org/10.1007/978-3-540-44502-9_3
  25. Yamamura Y., Tawara H. // Atomic Data and Nuclear Data Tables. 1996. V. 63. № 2. Р. 149. https://doi.org/10.1006/ADND.1996.0005
  26. Lieberman M.A., Lichtenberg A.J. Principles of Plasma Discharges and Materials Processing. John Wiley & Sons. 2005. https://doi.org/10.1002/0471724254
  27. Хофер В. // Распыление под действием бомбардировки частицами. Вып. III // Ред. Бериш Р. и др. М.: Мир, 1998. С. 84.
  28. Готт Ю.В., Явлинский Ю.Н. Взаимодействие медленных частиц с веществом и диагностика плазмы. М.: Атомиздат, 1973. 129 с.
  29. Семиохин И.А. Элементарные процессы в низкотемпературной плазме: уч. пособие. М.: МГУ, 1988. 142 с.
  30. Семенцов Д.И., Афанасьев С.А., Санинков Д.Г. Основы теории распространения электромагнитных волн: учебное пособие. Ульяновск: УлГУ, 2012. 112 с.
  31. Пятайкин И.И. // Журнал радиоэлектроники. 2020. № 10. https://doi.org/10.30898/1684-1719.2020.10.5
  32. Черкасова М.В. // Тр. МАИ. 2022. № 124. https://doi.org/10.34759/trd-2022-124-08

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).