Modeling the Process of Deposition of Erosion Products on the Walls of the Gas-Discharge Chamber of an Ion Thruster
- Authors: Cherkasova M.V.1
-
Affiliations:
- Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (National Research University)
- Issue: No 6 (2025)
- Pages: 129–140
- Section: Articles
- URL: https://journals.rcsi.science/1028-0960/article/view/376033
- DOI: https://doi.org/10.7868/S3034573125060159
- ID: 376033
Cite item
Abstract
The problem of contamination of the inner surface of the gas-discharge chamber of a high-frequency ion thruster with sputtered material of the accelerating electrode is considered. A physical and mathematical model of electrode surface sputtering by secondary ions is formulated using the sputtering indicatrix. The motion of sputtered atoms through the flow of primary beam particles is considered, and the conditions for the penetration of sputtered material into the plasma of the gas-discharge chamber are determined. The motion of impurity atoms through the gas-discharge plasma is considered taking into account the possibility of impurity ionization. It is also assumed that all impurity atoms reaching the chamber surface are condensed. Numerical modeling of surface contamination for a spherical gas-discharge chamber using carbon and titanium as the material of the accelerating electrode of the ion-optical system is performed, regardless to the chamber material. The angular distribution of particles penetrating the chamber is obtained, and the maximum velocity and localization of particle deposition on the surface of the gas-discharge chamber are estimated. The results are in satisfactory agreement with published experimental data.
About the authors
M. V. Cherkasova
Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute (National Research University)
Email: maria-post@mail.ru
Moscow, Russia
References
- Tartz M., Hartmann E., Neumann N. // 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, Florida, 11–14 July, 2004. AIAA-2004-3787. https://doi.org/10.2514/6.2004-3787
- Leiter H.J., Kukies R., Killinger R., Bonelli E., Scaranzin S., Scortecci F., Neumann H., Tartz M. // 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit. Cincinnati, July 08–11, 2007. AIAA-2007-5198. https://doi.org/10.2514/6.2007-5198
- Wirz R.E., Anderson J., Goebel D.M., Katz I.J. // IEEE Trans. Plasma Sci. 2008. V. 36. № 5. P. 2122. https://doi.org/10.1109/TPS.2008.2001041
- Goebel D., Katz I. Fundamental of Electric Propulsion: Ion and Hall Thrusters. JPL Space and Technology Series. 2008. 486 p. https://doi.org/10.1002/9780470436448.ch5
- Goebel D.M., Polk J.E., Sandler I., Mikellides I.G., Brophy J.R., Tighe W.G., Chien K.-R. // 31st Int. Electric Propulsion Conf. Ann Arbor, Michigan. September 20–24, 2009. IEPC-2009-152. https://electricrocket.org/IEPC/IEPC-2009-152.pdf
- Bundesmann C., Tartz M., Scholze F., Neumann H., Leiter H.J., Scortecci F., Feili D., Frigot P., Gonzalez del Amo J. // 31st Int. Electric Propulsion Conf. Ann Arbor, Michigan. September 20–24, 2009. IEPC-2009-160. https://electricrocket.org/IEPC/IEPC-2009-141.pdf
- Miyasaka T., Kobayashi T., Asato K. // Trans. Jpn Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. 2010. V. 8. № 27. P. Pb 61. https://doi.org/10.2322/TASTJ.8.PB_61
- Li J., Qiu J., Chu Y., Zhang T., Meng W., Jia Y., Liu X. // Int. J. Mech. Aerosp. Industr. Mechatron Eng. 2015. V. 9. № 11. P. 1989.
- Sangregorio M., Xie K., Wang N., Guo N., Zhang Z. // Chin. J. Aeron. 2018. V. 31. № 8. P. 1635. https://doi.org/10.1016/j.cja.2018.06.005
- Power J.L. Sputter Erosion and Deposition in the Discharge Chamber of a Small Mercury Ion Thruster // NASA_NTRS_Archive_19730023878. 1973. https://doi.org/10.2514/6.1973-1109
- Satori S., Hirakawa M., Shimizu Y., Toki K., Kuninaka H., Kuriki K. // Proc. 21st Int. Symp. on Space Techn. and Sci. 1998. V. 98 № a2-13. P. 1.
- Satori S., Kuninaka H. // J. Jpn Soc. Aeron. Space Sci. 1999. V. 46. P. 648. https://doi.org/10.2322/JJSASS1969.46.648
- Shirakawa R., Yamashita Y., Koda D., Tsukizaki R., Shimizu Y., Tagawa M., Nishiyama K. // Acta Astronautica. 2020. № 174. P. 376. https://doi.org/10.1016/j.actaastro.2020.05.004
- Dietz P., Reeh A., Keil K., Holste K., Probst U., Klar P.J., Volkmar C. // EPJ Tech. Instrum. 2021. V. 8. № 10. Р. 31. https://doi.org/10.1140/epjti/s40485-021-00068-5
- Forrester A.T. Large Ion Beams, Fundamentals of Generation and Propagation. Hoboken: John Wiley and Sons Inc., 1987. 325 p.
- Rapp D., Francis W.E. // J. Chem. Phys.1962. V. 37. № 11. Р. 2631.
- Hasted J.B., Phil D. Physics of Atomic Collisions. London: Butter Worths, 1964. 539 p.
- Abgaryan V.K., Akhmetzhanov R.V., Loeb Y.W., Obukhov V.A., Cherkasova M.V. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2013. V. 7. № 6. Р. 1092. https://doi.org/10.1134/S1027451013060037
- Allas R.G., Knudson A.R., Lambert J.M., Treado P.A., Reynolds G.W // Nucl. Instrum. Methods. 1982. V. 194. Р. 615. https://doi.org/10.1016/0029-554X(82)90592-4
- Yalin P., Rubin B., Domingue S.R., Glueckert Z., Williams J.D. // AIAA 2007-5314. https://doi.org/10.2514/6.2007-5314
- Zhang L., Zhang L.Z. // Radiat. Eff. Defects Solids. 2005. V. 160. № 8. Р. 337. https://doi.org/10.1080/10420150500396803
- Becker R. Modeling of Extraction of Positive Ions from Plasma. IGUN (1997–2011). Jacksonville. Florida. USA. URL: http://www.egun-igun.com/
- Zigmund P. // Sputtering by Particle Bombardment 1 / Ed. Behrisch R. Berlin: Springer, 1981. Р. 23.
- Eckstein W. // Sputtering by Particle Bombardment. Vacuum. 2007. V. 82 № 9. Р. 33. https://doi.org/10.1007/978-3-540-44502-9_3
- Yamamura Y., Tawara H. // Atomic Data and Nuclear Data Tables. 1996. V. 63. № 2. Р. 149. https://doi.org/10.1006/ADND.1996.0005
- Lieberman M.A., Lichtenberg A.J. Principles of Plasma Discharges and Materials Processing. John Wiley & Sons. 2005. https://doi.org/10.1002/0471724254
- Хофер В. // Распыление под действием бомбардировки частицами. Вып. III // Ред. Бериш Р. и др. М.: Мир, 1998. С. 84.
- Готт Ю.В., Явлинский Ю.Н. Взаимодействие медленных частиц с веществом и диагностика плазмы. М.: Атомиздат, 1973. 129 с.
- Семиохин И.А. Элементарные процессы в низкотемпературной плазме: уч. пособие. М.: МГУ, 1988. 142 с.
- Семенцов Д.И., Афанасьев С.А., Санинков Д.Г. Основы теории распространения электромагнитных волн: учебное пособие. Ульяновск: УлГУ, 2012. 112 с.
- Пятайкин И.И. // Журнал радиоэлектроники. 2020. № 10. https://doi.org/10.30898/1684-1719.2020.10.5
- Черкасова М.В. // Тр. МАИ. 2022. № 124. https://doi.org/10.34759/trd-2022-124-08
Supplementary files


