Peculiarities of Determination of Self Electromagnetic Emission from Pulsed Plasma Thrusters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

As part of the electric propulsion system integration with spacecraft, it is mandatory to verify its electromagnetic compatibility. Considering that electric propulsion systems of almost all types can operate under space conditions only, determination of their electromagnetic emission in ground conditions is not a simple task. This paper discusses the peculiarities of determining self electromagnetic emission from pulsed plasma thrusters under ground conditions. The international experience in studying emissions from such thrusters is analyzed, and approaches to designing test facilities are formulated. Experimental results obtained for the ablative pulsed plasma thruster APPT-50, which was developed at the Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute, are compared with similar results for foreign analogs. On the basis of comparison, the possibility of obtaining preliminary estimates for the spectrum of emission from pulsed plasma thruster was confirmed when using metallic vacuum chambers equipped with radio-transparent windows to transmit the emission to the apertures of the pick-up antennas.

About the authors

A. P Plokhikh

Moscow Aviation Institute (National Research University)

Email: plokhikh2001@mail.ru
Moscow, Russia

D. D Boriskin

Moscow Aviation Institute (National Research University)

Email: ddboriskin@yandex.ru
Moscow, Russia

References

  1. Казеев М.Н. // Труды МАИ. 2012. № 60. С. 23.
  2. Антропов Н.Н. Богатый А.В., Дьяконов Г.А., Любинская Н.В., Попов Г.А., Семенихин С.А., Тютин В.К., Хрусталев М.М., Яковлев В.Н. // Вестник ФГУП “НПО им. СА Лавочкина. 2011. № 5. C. 30.
  3. Guarducci F., Coletti M., Gabriel S.B. Design and testing of a micro pulsed plasma thruster for Cubesat application // 32nd International Electric Propulsion Conference. 2011. P. 239.
  4. Coletti M., Guarducci F., Gabriel S.B. // Acta Astronautica. 2011. V. 69. № 3–4. P. 200. https://doi.org/10.1016/j.actaastro.2011.03.008
  5. Krejci D., Seifert B., Scharlemann C. // Acta Astronautica. 2013. V. 91. P. 187. https://doi.org/10.1016/j.actaastro.2013.06.012
  6. Williams D. Propulsion solutions for Cubesats and applications. // CubeSat Developers Workshop, Logan, UT. 2012.
  7. Saylor W.W., France M.E.B. Test and On-Orbit Experiences of FalconSAT-3. // 45 Symposium Small Satellites Systems and Services. 2008. V. 660. P. 64.
  8. Ахметжанов Р.В., Богатый А.В., Дьяконов Г.А., Ким В.П., Меркурьев Д.В., Любинская Н.В., Семенихин С.А., Спивак О.О., Попов Г.А. // Известия РАН. Энергетика. 2019. № 3. С. 3. https://doi.org/10.1134/S0002331019030038
  9. Zhao Y., Wu J. A review on plasma diagnosis technology of pulsed plasma thruster. // Journal of Physics: Conference Series. 2021. V. 1952. № 3. P. 032087. https://doi.org/10.1088/1742-6596/1952/3/032087
  10. Kamhawi H., Mikellides P.G., Turchi P.J. Experimental and theoretical investigation of an inverse-pinch coaxial pulsed plasma thruster. // IEPC-01-162, 27th International Electric Propulsion Conference, Pasadena, CA, 15–19 Oct. 2000. https://doi.org/10.2514/6.2000-3261
  11. Arrington L. Evaluation of pulsed plasma thruster micropulsing. // 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2004. P. 3458. https://doi.org/10.2514/6.2004-3458
  12. Bogatyi A.V., Dyakonov G.A., Lyubinskaya N.V., Murataeva D.A., Popov G.A., Semenikhin S.A. // Cosmic Research. 2023. V. 61. № 5. P. 412. https://doi.org/10.1134/S0010952523700363
  13. Hoskins W., Rayburn C., Sarmiento C. Pulsed Plasma Thruster electromagnetic compatibility — History, theory, and the flight validation on EO-1. // 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama. 2003. https://doi.org/10.2514/6.2003-5016
  14. Hoskins W.A., Sarmiento C., Rayburn C., Campbell M. The Electromagnetic Compatibility of Pulsed Plasma Thrusters with Spacecraft Systems. // 51st JANNAF Propulsion Meeting, Orlando. 2002.
  15. Дьяконов Г.А. Любинская Н.В., Семенихин С.А., Хрусталёв М.М. // Труды МАИ. 2014. № 73. С. 7.
  16. Benson S., Arrington L., Hoskins W., Meckel N. Development of a PPT for the EO-1 Spacecraft. // 35th Joint Propulsion Conference and Exhibit. 1999. https://doi.org/10.2514/6.1999-2276
  17. MIL-STD-461C. Military Standard Electromagnetic Emission and Susceptibility Requirements for The Control of Electromagnetic Interference. 15 October 1987.
  18. Garrett M.L., Beiting E.J., Caven W., Cory R. Electromagnetic Emissions from DC to 17 GHz from a Pulsed Plasma Thruster (PPT). // The 30th International Electric Propulsion Conference, Florence, Italy September 17–20, 2007. IEPC–2007-269
  19. Ciaralli S., Coletti M., Gabriel S.B. // Acta Astronautica. 2015. V. 121. P. 314. https://doi.org/10.1016/j.actaastro.2015.08.016
  20. Zakrzwski C., Davis M., Sarmiento C. Addressing EO-1 spacecraft pulsed plasma thruster EMI concerns. // 37th Joint Propulsion Conference and Exhibit. 2001. P. 3641. https://doi.org/10.2514/6.2001-3641
  21. Zakrzwski Ch., Benson S., Sanneman P., Hoskins A. On-orbit testing of the EO-1 pulsed plasma thruster. // 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2002. P. 3973. https://doi.org/10.2514/6.2002-3973
  22. Важенин Н.А., Обухов В.А., Плохих А.П., Попов Г.А. Электрические ракетные двигатели космических аппаратов и их влияние на радиосистемы космической связи. М.: ФИЗМАТЛИТ, 2013. 432 с. ISBN 978-5-9221-1410-3.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).