Investigation of Integral Characteristics of a Radio-Frequency Ion Thruster Operated with Krypton and Assessment of the Resource of its Ion-Extraction System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of an experimental study of the integral characteristics of a laboratory model of a radio-frequency ion thruster with a beam diameter of 80 mm operating on krypton. A comparison of the obtained characteristics with the results of tests of the laboratory model using xenon as a propellant is carried out. The computational studies result to assess the impact of the transition to krypton on the accelerating grid resource of the thruster ion-extraction system and the efficiency of ion beam focusing are presented. The results of modeling the erosion process of the accelerating grid surface under the influence of the corresponding ions falling on the grid during operation are presented for xenon and krypton, taking into account the operating modes of the radio-frequency ion thruster laboratory model considered during the experiments. A number of studies have made it possible to evaluate the change in the integral characteristics of a radio-frequency ion thruster in the event of a transition to using a cheaper propellant compared to xenon. The obtained results can be used to optimize existing radio-frequency ion thruster models for krypton in order to achieve the highest operating efficiency.

About the authors

V. V. Kozhevnikov

Moscow Aviation Institute (National Research University)

Moscow, Russia

A. V. Melnikov

Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute

Email: melnikov.andrey.sp@yandex.ru
Moscow, Russia

I. P. Nazarenko

Moscow Aviation Institute (National Research University)

Moscow, Russia

V. V. Svoitna

Research Institute of Applied Mechanics and Electrodynamics of the Moscow Aviation Institute

Moscow, Russia

S. A. Khartov

Moscow Aviation Institute (National Research University)

Moscow, Russia

References

  1. Kim V., Popov G., Kozlov V., Skrylnikov A., Grdlichko D. Investigation of SPT performance and particularities of its operation with Kr and Kr/Xe mixtures. IEPC 2001-065. // Proc. of 27th International Electric Propulsion Conference. Pasadena, CA, 2001.
  2. Гниздор Р.Ю., Пятых И.Н., Каплин М.А., Румянцев А.В. // Вестник Московского авиационного института. 2023. Т. 30. № 2. С. 106.
  3. Merkurev D.V., Baranov S.V., Kim V.P., Melnikov A.V., Shilov E.V. // Technical Physics Letters, 2023, Vol. 49, No. 2.
  4. Саевец П.А., Румянцев А.В. // Вестник Балтийского федерального университета им. И. Канта. Серия: Физико-математические и технические науки. 2016. № 3. С. 80.
  5. Starlink (2024) SpaseX, USA. https://www.starlink.com/ (дата обращения: 27.07.2024)
  6. Важенин Н.А., Обухов В.А., Плохих А.П., Попов Г.А. Электрические ракетные двигатели космических аппаратов и их влияние на радиосистемы космической связи. М: Физматлит, 2013. 432 с.
  7. Leiter H.J., Loeb H.W., Schartner K.H. The RIT15 Ion Engines. A survey of the present state of Radio-Frequency Ion Thruster technology and its future potentiality. // Proc. of 3rd International Conference on Spacecraft Propulsion, 10–13 Oct. 2000, Cannes, France.
  8. Groh K.H., Fahrenbach P., Loeb H.W. ESA-XX Ion Thruster for Interplanetary Missions // Proc. of First European Spacecraft Propulsion Conference, 8–10 Nov. 1994, Toulouse, France.
  9. Bassner H., Bond A.R., Thompson K.V., Groh K. The ESA-XX Ion Thruster. // Proc. of Second European Spacecraft Propulsion Conference, 27–29 May.1997, Noordwijk, Netherlands.
  10. Bisten M., Freisinger J., Lob H., Heland J., KrempelHesse J., Krumeich J., Neumann P. The rf-ion sources RIM and PRIS for material processing and surface modification. IEPC1991-066. // Proc. of 25th International Electric Propulsion Conference, 14–17 Oct. 1991, Viareggio, Italy.
  11. Мельников А.В. Высокочастотный ионный двигатель с дополнительным постоянным магнитным полем // Дис. канд. технических наук: 05.07.05. Москва: МАИ, 2019. 157 с.
  12. Goebel D.M., Katz I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters (JPL Space Science & Technology Series). John Wiley & Sons, 2008. 486 p.
  13. IOS-3D (2024) AO ГНЦ “Центр Келдыша”, Россия. https://keldysh-space.ru/nasha-deyatelnost/raketno-kosmicheskaya-deyatelnost/stifrovyte-tekhnologii/ (дата обращения: 25.02.2025).
  14. GPR-based Sputtering Yield Prediction (2020) Osaka University, Japan. http://www.camt.eng.osaka-u.ac.jp/hamaguchi/SY/ (дата обращения: 27.07.2024).
  15. Абгарян В.К., Леб Х.В., Обухов В.А., Шкарбан И.И. // Поверхность. Рентген., синхротр. нейтрон. исслед. 2012. № 8. С. 70.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).